续一式解万方
-------- N 阶魔方的其他问题及延伸
作者:邱志红
目录
一、N 阶魔方的内部问题
二、两棱问题
三、N 阶魔方的结构模型
四、小块的坐标
五、N 阶魔方的转动模型
六、H 函数的推广
七、长方体魔方的模型
八、长方体魔方的复原
九、长方体魔方的相关问题
十、统一论
一、N 阶魔方的内部问题
当你看到上一篇的最后一节时,你是否注意到:“ N 阶魔方的表面就这么多就可以了”这么一句话。这明显的就是我留下的悬念,表面复原了,那内部呢 ? 魔方内部是否也跟着复原了呢?
答案是否定的,即魔方的表面复原的时候,内部不一定复原,而且内部复原的几率还很小。我以前的帖子里面就提到过这个问题了。现在我有了完全的解决方法了。
首先定义几个概念:
魔方的阶 :N 阶魔方的表面称为 N 阶,内部包含的 (N-2) 阶魔方的表面称为 (N-2) 阶,依次定义直到最后的 2 阶或 1 阶。
魔方的层次:N 阶的表面称为 N 阶魔方的第一个层次,(N-2) 阶的表面称为 N 阶魔方的第二个层次,依次定义直到第 个层次或第 个层次。
由以上的定义发现:N 阶魔方是一层包一层的,依次递减两阶。所谓的阶,层次都是指的某一表层。是不包括内部的。同时定义两者是为了描述的方便,其实一个就够了。
有了以上的定义,就有一个定理:H 函数对应的公式只影响某一个层次,而对该层次以内或以外的层次无影响。而且被影响的那个层次由三个转层中最靠外的一个转层决定。
考虑到 p,q,r 的取值都是 1-n, 靠外的层所对应的 变量 不一定 就小。比如第 n 层就是最外层,但 n 是最大的。所以最靠外层用数学的方法表述就是。令 S 是最靠外层,那么
S=min{p,q,r,(n+1)-p,(n+1)-q,(n+1)-r}
即要确定最靠外层,观察三个转层的时候都要从正反两个方向来看。六个中最小的才能称为最靠外层。由于令 S 是最靠外层。那么定理就可以明确地写为:H 函数对应的公式只影响 N 阶魔方的第 S 个层次。其中 S=min{p,q,r,(n+1)-p,(n+1)-q,(n+1)-r}, 而对大于或小于 S 的层次是无影响的。
是不是觉得很不可思意。还是觉得不可能。那我就证明一下吧。
证明:1.对于大于 S 的层次,至少第 S 个转层是不参加转动的,因为大于 S 的层次根本就没有那个转层。现在来看一下 H 函数吧。看看缺少某一个转层即缺少某种颜色字符的层之后的 H 函数是怎么样的吧。
H(p,q,r)=YpZq--Yr-ZqYp-Zq--YrZq
如果缺少 Yp 层的参与,那么 H(p,q,r)=Zq--Yr-ZqZq--YrZq=I
如果缺少 -Yr 层的参与,那么 H(p,q,r)= YpZq-ZqYp-Zq-Zq=I
如果缺少 Zq 层的参与,那么 H(p,q,r)= Yp-Yr-Yp--Yr=I
上面的 I 表示循环操作。发现三个转层缺少任何一个参与,该操作就成了循环操作了。这样就证明了大于 S 的层次即 S 层次里面的层次是不受 H 函数影响的,所作的是循环。
2。对于小于 S 的层次,即 S 层次外面的层次的问题就不好办。因为它不象上面那样至少有一个层没参与转动。它可是三个转层都参与转动了啊,但也是一个循环操作。
如果对所有转动了的小块进行跟踪,要进行 3n2-2n 次跟踪,是不现实的。明显地单体分析是行不通的,还是要整体分析。要是能像上面那样利用循环就方便多了。
好想法,但是问题是:的确是三个层参与而不是两个层参与啊。但可以这样处理,把某两个层归在一起作为一个群,而另外的第三个层也作为一个群。前一个群缺少一个层参与,那么所作的操作就是循环操作了,上面一节已论证了。而后一个群只有一个层,也能很容易看到它所作的也是循环操作。两个群作的都是循环操作,问题就在于:两个循环操作是穿插进行的,不是一先一后地进行,而且还有相交的地方,两个循环操作必定互相影响,定存在群与群之间的元素互换。现在只有期待群与群之间的元素互换,最终又回归各自的群。
问题转化为证明:交换了的元素能否最终又回归各自的群。现在只证明第三个层中元素的运动情况,而前两个层中的元素也可以用同样的方法去证明,就不用再罗嗦一遍了。
如图,绿层所代表的就是一个群,区别与红层代表的另外一个群。分开来看都是循环的。A1,A0 是特殊块,它们的正对面分别是 A1',A0'(图中没画,知道就行)。
现在,就来一步一步地分析两个群之间的元素交换,全过程如下:
第一步:Yp 层转动,无元素交换。
第二步:Zq 层转动,无元素交换。
第三步:-Yr 层转动,A1 转到 A0 处,A1' 转到 A0' 处。
第四步:Zq 层转动,A1 转到 A2 处,A1' 转到 A2' 处。
第五步:Yq 层转动,无元素交换。
第六步:Zq 层转动, A 1 转到 A 0 处, A 1 / 转到 A 0 / 处。
第七步:-Yr 层转动,A1 转到 A1 处,A1' 转到 A1' 处。
第八步:Zq 层转动,无元素交换。
从以上的分析发现,红层里面存在交换的元素经过一系列的运动又回归红层而且是原处。绿层里面的元素也一样。
还有一个特殊问题就是交叉元素 A0,A0' 的情况。它的运动不能称之为两个群的元素交换。其实只要证明它也能回归原位就可以了,道理一样,我就不证明了。
对于小于 S 的层次,即 S 层次外面的层次的问题已经全部证明完毕。是无影响的。
3。对于等于 S 的层次,问题就可以不用证明了,因为 H 函数本来就不是一个循环操作(你能证明它等于 I 吗?),它一定会对魔方产生一定的影响。既然已经证明了上面的两条,那么现在就可以马上断定它影响的地方一定就在第 S 层次。
定理到此全部证明完毕。
如果你没有群的观念,而把它当成是三个转层之间的问题的话,证明的难度会大大增加,过程也会相当烦琐。
这个定理是完全复原 N 阶魔方的理论支持。即 使 N 阶魔方的外部及内部各个层次的所有的总共 N3 个小块都归原位的理论基础。
那么 N 阶魔方的完全复原过程是:先复原表层也即魔方的第一个层次,包括面块的完全复原,中心复原在内。也即第一个层次的完全复原。这时候注意一点,既然表面完全复原了,那么整个 N 阶魔方簇之间的扰动就完全消除了(这一点就交给彭伟解释吧)。那样的话,内部各个层次的复原就都是簇内变化了,刚好我的 H 函数对应的操作也全部都是簇内变化。所以凭 H 函数就能完全复原 N 阶魔方的内部。
更有意思的是,由于内部复原都是簇内变化,所以内部层次的复原不需要按由外到内的顺序依次复原。内部层次复原的顺序可以是任意的。
特殊地,奇数阶魔方的中心块与各面心块的问题:很特殊,建议一开始就解决掉,把位置都摆正确,而且别的小块都以它们为标准复原,以免留下一大堆遗留问题。
本节完。
[此贴子已经被cube_master于2005-9-24 0:47:27编辑过]
|