魔方吧·中文魔方俱乐部

标题: 试解释三阶魔方4325亿亿个状态的由来 [打印本页]

作者: 乌木    时间: 2009-1-20 12:00:15     标题: 试解释三阶魔方4325亿亿个状态的由来

三阶纯色魔方(指中心块的色片只有颜色,没有文字或图案,故显示不出它们就地旋转与否的那种魔方)的状态变化数多达 43 252 003 274 489 856 000,即约4.325×10^19,或约4325亿亿。

获得此数的计算式之一为 8!×12!×3^8×2^12 /(2×3×2)。此式有个重要约定:六个中心块固定不动(即魔方不做整体翻滚动作),作为角块、棱块位置变化和色向变化的参照物。也就是说,如果魔方整体旋滚一下,不产生新的花样。(有的计算法无此约定,答案不同,另有用途。)

算式的分子部分8!×12!×3^8×2^12 就是拆下角块、棱块后,仍在中心块组不拆、不动的条件下,随机组装角块、棱块时可能获得的状态数。分别解释如下:

8个角块在8个位置中的随机组装方式(暂时只看位置变化,不管角块的色向变化,色向问题接下去另算)共有 8!种;
12个棱块(暂时只论位置变化,不计色向变化,棱块的色向问题下面另算)在12个位置**有12!种随机组装方式;
每个角块就地可以有3种颜色取向的装法,随机组装时8个角块因色向变化引起的不同状态共有3^8种;
一个棱块就地有2种颜色取向,随机组装时12个棱块因色向变化造成的状态变化总数就是2^12 。

现在要问,经过转动魔方层的方法布排角块和棱块(即不是上述拆下角块、棱块随机组装的方法),“同样的”魔方,状态变化的总数为何是 8!×12!×3^8×2^12 /(2×3×2)?只需对算式的分母部分解释如下:

(8!×12!)/ 2 --上述的8个角块和12个棱块不同的位置变化总数到此要除以2的原因是,(8!×12!)这个数当然含有等价于单单互换两个块的排列方式,但是魔方转动的规律决定了现在无法单单互换两个块了,所以要除以2。也就是说,现在的变化不是上面那样地“随机”的了!

比如,头6个角块的布排方式有8×7×6×5×4×3种,第7和第8个角块面对2个空位,不再有2种排法了,要看当时头6个角块和12个棱块的布排情况如何,第7和第8个角块只能是两种布排之一,不可能是另一种。“选择”准则就是避免出现(如果复原起来,到最后)要单单互换两个块。
这样,当棱块的排列方式已经有12!时,8个角块的排列方式只有8×7×6×5×4×3×1×1。
或者,当角块已有8!种排列方式时,12个棱块只有12×11×10×9×8×7×6×5×4×3×1×1 种位置变化。
两种等价的说法都表明现在的角块、棱块的位置变化数为 (8!×12!)/ 2 ,不是那么随机的了!
这里只需除以2,不能除以4。因为,“不能单单交换两个块”是不论角块还是棱块的。看看PLL公式,可以看到:1、没有单单交换两个块的!但是,2、两两角块交换或两两棱块交换还是可以的,两个角块并两个棱块交换也是可以的。
至于空心魔方的“特殊情况”--“单单交换两个块”还是出现了,那是假象!须知,看不见的、但仍然顽强地起作用的中心块也有了变化。相对于参照物中心块而言,还是角块、棱块有了较复杂的变化,并非表观上的单单两个块交换了,看上去单单两块交换的说法不是相对于中心块而言的,却是相对于角块、棱块框架中的大部分块的状态而言的。偷换参照之后,人们容易产生误会了。

3^8 / 3 --由于魔方转动变化的规律,现在不可能单单改变一个角块的色向,所以要除以3。
现在是转魔方的方法,当头7个角块的色向确定后,第8个角块的色向只能取其三种色向之一,不能取其另两种色向。第8角取向的准则就是避免出现(如果复原起来,到最后)要单单改变一个角块的色向。
可见,转动魔方时8个角块的色向变化所引起的魔方花样变化数为3×3×3×3×3×3×3×1 ,同样不那么随机的了!
所以,一个正确魔方,复原态也好,转乱态也罢,保持各角块的位置不变之下,任选一个角块,你不可能用转动魔方的方法,就地改变所选角块的色向而保持其余7个角块的色向都不变。

2^12 / 2 --仿照关于“3^8 / 3 ”的解释,您自己说说看。

[ 本帖最后由 乌木 于 2009-6-11 21:41 编辑 ]
作者: zhy3729    时间: 2009-1-20 12:06:37

好!! 我钟意 沙发先!
作者: 乌木    时间: 2009-1-20 12:09:56

鉴于常常有人问这个问题,试着写这段小文字。估计问题不少,愿和各位同好探讨、交流,共同提高对此问题的理解。
作者: 一不死生    时间: 2009-1-20 12:25:28

好东西!!顶一个!!
作者: lgt    时间: 2009-1-20 12:49:19

哇,真是惊人~!!
作者: 3595669260    时间: 2009-1-20 12:51:07

好东西,顶一个再慢慢看
作者: qq171614899    时间: 2009-1-20 13:18:36

正想发问这个问题呢!呵呵,乌木可真是牛啊!
作者: kexin_xiao    时间: 2009-1-20 13:20:32

顶乌木老师,我自己也再学习一次!
作者: yuanyonghui1616    时间: 2009-1-20 16:04:11     标题: 看不懂,数学没有学好

看不懂,都怪自己的数学没有学好,有点复杂。。
作者: 乌木    时间: 2009-1-20 20:21:38     标题: 回复 9# 的帖子

你可以复习一下排列组合的有关内容。
---------------------
如果要进一步问普通魔方转动时为何在块的位置布局、角块的色向和棱块的色向方面有上述三大制约,我就说不清了。论坛有帖子阐述的,我是大多看不懂。

对于三阶,除了用1楼的思路解释外,还有更正规的、理论性更强的论述。据说,阶数更高时就无法用1楼的计算法了,要根据魔方理论来计算。可以到理论区看有关帖子。我1楼的解释中估计有不少概念是经不起魔方理论的挑剔的,故我是不敢贴到理论区去的。在此处先和各位在较低的层次上探讨探讨再说。
作者: 知Shmily足    时间: 2009-1-20 20:26:34

乌木老师就是乌木老师!顶!
作者: juventus66    时间: 2009-1-20 20:31:04

支持,长见识了
作者: 铯_猪哥恐鸣    时间: 2009-1-20 20:41:36

自己算出来的结果比理论值大了12倍。。。没考虑到某些不可能的情况…………
作者: ursace    时间: 2009-1-20 20:42:08

乌木老师太强大了!
作者: dryghost    时间: 2009-3-15 15:24:33

看不懂,不过还是学习了.
作者: 道格    时间: 2009-3-19 18:45:29

目前只会层先法,很想进一步学习!
作者: ytmlpkdc    时间: 2009-3-20 00:53:03

排列组合。。。。我会一点。。。看懂了一部分
作者: 3595669260    时间: 2009-6-9 10:45:47

很好很强大,刚学了排列组合,现在终于明白魔方的状态数是怎么算出来的了!!!
作者: 幺贰叁    时间: 2009-6-11 20:58:30

原来还有这么多学问,支持乌木
作者: xdgtzsyyj    时间: 2009-6-11 21:00:03

这个问题现在终于搞懂了
作者: hcwang    时间: 2009-6-11 21:33:04

真复杂,有时间慢慢研究
作者: 幺贰叁    时间: 2009-6-14 13:18:54

感谢乌木老师,我终于明白了。
作者: 马良    时间: 2009-6-14 19:01:03     标题: 回复 1# 的帖子

乌木老师数学真好!!!!作什么的
作者: wendaomaye    时间: 2009-7-28 18:25:31

一个人一辈子都不可能把所有状态玩遍……………太多了
作者: gipfelbaum    时间: 2009-8-2 23:48:08

太深奥了,我数学不好,看不懂
作者: newbiea9    时间: 2011-5-29 15:28:22

lz辛苦。顶一下吧
作者: 894058936    时间: 2011-5-29 16:47:51

原帖由 zhy3729 于 2009-1-20 12:06 发表
好!! 我钟意 沙发先!

哦 了解一下数字 很大呀 4亿亿多
作者: 498648135    时间: 2011-5-29 22:20:50

做上标记,留着慢慢看……
作者: 林小哆    时间: 2011-5-29 23:22:06

好高深…那么大的数字…
作者: newbiea9    时间: 2011-6-2 22:05:49

好复杂啊。顶一个
作者: 墨飞儿    时间: 2011-6-2 22:10:49

好文章!!!!!!!




欢迎光临 魔方吧·中文魔方俱乐部 (http://bbs.mf8-china.com/) Powered by Discuz! X2