ħɡħֲ
:
ľľľľľ
[ӡҳ]
:
ʱ:
2009-3-3 22:31:49
:
ľľľľľ
nrvɽϵľҾ뵽Ҫ傀Kŵľ֣RTɂľֿԺƴһ֣֣NжٷNأ
صң_ʼ㡣
ľľľľľ
ľľľ
ľľľ
ľľľ
ľľľ
ľ
ľ
ľ
˂
@Ǜ]xģ@ֻһl_ʼNKľֵĿء
Σأ
Σأ
Σأ@eܟoģ_ʼͬˣ
Σأһȥc֣
Σأϣ_ʼƳPSˣ
Σأ
ˆ쳲У
1 1 2 3 5 8 13....
Ǹǰɂֵĺ́턓һĔС䌍摪ԓһΣأ@Ӿˡ
@ұWˡ
ȻϣɭĽMϣֿԺƴmȻKܣ
Σأ
Σأ
Σأ
Σأ
Σأ
Σأ
@ЩʲNأ@οǼǰˡ
@rСr^һlWʮݣһߣжٷN߷
@пԽQقԪؿԁϕrһǰقĺ͡^قǣ......Ȕ
ܸλڶѽ֪@Щ|ˣСܿǵһҵ@PSڴһPo䛡
߀һcՈLULIJIEгأκͣٵPSͨùʽҺøһcx^ˡ
:
ʱ:
2009-3-3 22:37:52
¥ǿҶˣˣ֧֣
:
Cielo
ʱ:
2009-3-3 22:40:46
֡ľ⣬ n ľʱ a(n) ֣ n+1 ľ
һľľʣµ a(n) ֣ǰľ֣ʣµ a(n-1) ֣
a(n+1) = a(n) + a(n-1) Fibonacci ˡ
Ǹͨʵ̫˰
:
ħ
ʱ:
2009-3-3 22:51:39
ȶ,ĸ㲻.
:
R'cube
ʱ:
2009-3-3 22:57:08
:
ظ 3#
ǵƹʽɲͨʽ
LZĶ~~
:
ʱ:
2009-3-3 23:00:48
ܲܣͨʽ
:
tonylmd
ʱ:
2009-3-3 23:01:10
Ѷ Ʒ㗊~
˳㿼 ֪~
:
ʱ:
2009-3-3 23:05:59
Ʒﳪo@cs|{ľͲ֪
:
ֱ
ʱ:
2009-3-3 23:08:17
һ ئ...........
еãLZȻԴ"ľ"뵽ô
:
R_С
ʱ:
2009-3-3 23:18:07
һ£N3ʱXǰ3͡統N=4ʱX=4+2+1ơXn=X(n-1)+X(n-2)+X(n-3),n>3Ҫ¥ԼƵɣȲǵȲҲǵȱȣֻеƹʽģûͨʽ
:
Atato
ʱ:
2009-3-3 23:21:40
һΪˮء
˲ŷȤ
ʵ ľľľľľ ...¥һô?.ʶ1+2+3+4+5+6....
Գ쳲(ôôѵ,ֱӸ)Ӧõ.
:
Atato
ʱ:
2009-3-3 23:23:41
ͬеѰ...
˵...10¥ΪǵȲǵȱȾûͬʽô....
:
tonylmd
ʱ:
2009-3-3 23:24:56
Ҳ㰡˵и4һ ʴLLLL
˳
h
bng
˵ĸ֡beng
˵ˮ ǿԲŽ
ټһ
˵ġ
ʱ(big5)бʻһ֣48
[
tonylmd 2009-3-3 23:35 ༭
]
:
R_С
ʱ:
2009-3-3 23:28:07
:
12#
һûеġȱȳ˵ȲƵЩֻеƹʽûͨûƵɣ5ˡ
:
Vicki
ʱ:
2009-3-4 00:09:57
ľˮƽ~
:
zt40513091
ʱ:
2009-3-4 09:07:19
̫ IJ֪
:
ħ̴ʯ
ʱ:
2009-3-4 10:12:42
ѧȤ, Ա˳ŵû¸һ
:
Atato
ʱ:
2009-3-4 13:59:20
ԭ
498232382
2009-3-3 23:28
һûеġȱȳ˵ȲƵЩֻеƹʽûͨûƵɣ5ˡ
ˡ Fibonacci еͨʾ....
F(n)=(1/5)*{[(1+5)/2]^n - [(1-5)/2]^n
:
kexin_xiao
ʱ:
2009-3-4 17:56:34
¥ѧҪǿܶ
:
juventus66
ʱ:
2009-3-4 19:08:41
öľ,ۻ
:
쾠D
ʱ:
2009-3-4 19:11:55
Fibonacci еͨƵѧû
:
DK24
ʱ:
2009-3-4 20:56:03
ǽӰҪ
У¥ѧѧòĿ뵽
ʵǰʱҲᡭ
3ӵͨʱ롣
:
8С
ʱ:
2009-3-4 22:51:37
:
ظ 5#
쳲ͨʽ
:
8С
ʱ:
2009-3-4 22:53:02
һоǰ
:
쾠D
ʱ:
2009-3-5 11:08:12
:
ظ 23#
Fibonacci еȻͨ
Fibonacci ͨеС̺
:
8С
ʱ:
2009-3-5 13:08:49
:
ظ 25#
ԭҲ
쳲ͨʽƵ
[༭]
쳲У1123581321
F(n)Ϊеĵn(nN+)ô仰дʽ
F(1)=F(2)=1,F(n)=F(n-1)+F(n-2) (n3)
ȻһԵС
ͨʽƵһ
ԵеΪ
X^2=X+1
X1=(1+5)/2, X2=(1-5)/2.
F(n)=C1*X1^n + C2*X2^n
F(1)=F(2)=1
C1*X1 + C2*X2
C1*X1^2 + C2*X2^2
C1=1/5C2=-1/5
F(n)=(1/5)*{[(1+5)/2]^n - [(1-5)/2]^n}5ʾ5
ͨʽƵͨ
賣r,s
ʹF(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]
r+s=1, -rs=1
n3ʱ
F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]
F(n-1)-r*F(n-2)=s*[F(n-2)-r*F(n-3)]
F(n-2)-r*F(n-3)=s*[F(n-3)-r*F(n-4)]
F(3)-r*F(2)=s*[F(2)-r*F(1)]
n-2ʽˣã
F(n)-r*F(n-1)=[s^(n-2)]*[F(2)-r*F(1)]
s=1-rF(1)=F(2)=1
ʽɻã
F(n)=s^(n-1)+r*F(n-1)
ô
F(n)=s^(n-1)+r*F(n-1)
= s^(n-1) + r*s^(n-2) + r^2*F(n-2)
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) + r^3*F(n-3)
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) ++ r^(n-2)*s + r^(n-1)*F(1)
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) ++ r^(n-2)*s + r^(n-1)
һs^(n-1)Ϊr^(n-1)Ϊĩr/sΪĵȱеĸĺͣ
=[s^(n-1)-r^(n-1)*r/s]/(1-r/s)
=(s^n - r^n)/(s-r)
r+s=1, -rs=1һΪ s=(1+5)/2, r=(1-5)/2
F(n)=(1/5)*{[(1+5)/2]^n - [(1-5)/2]^n
:
lulijie
ʱ:
2009-3-7 12:25:40
йʽX(N) 2^N-1 N<=Y
X(N)=X(N-i) i=1 to Y N>Y
--------------------------------------------------------------------------
Y=2ʱ Fibonacci
ͨʽ X(N)=0.723606797749979 * (1.61803398874989) ^ N + 0.276393202250021 * (-0.618033988749895) ^ N
------------------------------------------------------------------------
Y=3ʱ
ͨʽ X(N)=0.618419922319393 * (1.83928675521416) ^ N + 0.383408663070638 * (-0.737352705760328) ^ N * Cos(0.965359108097924 * N + 0.0977044663870669)
---------------------------------------------------------------------
Լоȷ⣬X(N)ֻҪСֵ뵽λdzȷ
Ϊ6.99999999999999ʵǵ7
:
ʱ:
2009-3-7 21:37:04
ϹȻСλNࡣ1.61803398874989Sָ
:
lulijie
ʱ:
2009-3-10 17:54:05
Y=4ʱ
ͨʽ X(N)=0.566342887702648 * 1.92756197548293 ^ n + 0.149469516524664 * (-0.774804113215433) ^ n + 0.289707512992734* (-0.81827609877954) ^ n * Cos(1.47731898080876 * n + 0.195520990558405)
:
yzsjw0
ʱ:
2009-3-12 18:45:00
ģľľɭľɭľɭľľɭɭ֡
:
D.H.
ʱ:
2009-3-18 15:45:00
:
˹ҿ˹֮
ʱ:
2009-5-22 20:17:08
ôְǷ
ӭ ħɡħֲ (http://bbs.mf8-china.com/)
Powered by Discuz! X2