魔方吧·中文魔方俱乐部
标题:
研究性课题
[打印本页]
作者:
石崇的BOSS
时间:
2010-10-1 16:35:23
标题:
研究性课题
代数方程与判别式
在古典数学中,解方程基本上就是代数学的代名词,而判别式又是解方程中比较重要的概念。花拉子米的《代数学》比较完整地讨论了一次、二次方程的一般原理和解法,推动了代数学的发展。继一元二次方程以后,数学史上又出现了更高次代数方程的解法,其中比较著名的就是卡丹对于一元三次方程的解法。
现在,我们将运用已有的知识,探索代数方程与判别式的一些基本理论。
1.基本假设
变量x,y∈C, n,k∈R;常数a,b,c,d,p,q∈R
2.一元二次方程
2.1判别式
已知一元二次方程:ax[sup]2[/sup]+bx+c=0(a≠0),试探索下列问题:
(i)利用判别式讨论此一元二次方程根的情况。
(ii)设x[sub]1[/sub],x[sub]2[/sub]是此一元二次方程的两根,试将判别式表示成仅含有x[sub]1[/sub],x[sub]2[/sub]和a的代数式。
2.2韦达定理
韦达定理的推广形式是代数方程理论中最重要的定量之一,它建立了任意多项式根与系数之间的的关系,其具体表现形式如下:
设多项式f(x)=x[sup]n[/sup]+a[sub]1[/sub]x[sup]n-1[/sup]+……+a[sub]k[/sub]x[sup]n-k[/sup]+……+a[sub]n[/sub]。根据代数基本理论,当f(x)=0时,假定其所有的复数根为x[sub]1[/sub],x[sub]2[/sub],……,x[sub]n[/sub]。那么,韦达定理的推广形式可以被表述为:
2010-10-1 16:35:23 上传
下载附件
(3.45 KB)
(iii)叙述并证明当n=3时韦达定理的推广形式。
3.一元三次方程
3.1恒等变换
数学史上,一元三次方程有着十分重要的地位。文艺复兴时期,意大利的数学家塔塔里亚发现了一元三次方程的求根公式,并在与菲奥里的公开学术论战中一举成名。但塔塔里亚的成果最终却被米兰的医生卡丹所窃取。随后,一元三次方程的求根公式被命名为卡丹公式,一直流传至今。
已知一元三次方程:x[sup]3[/sup]+bx[sup]2[/sup]+cx+d=0,试探索下列问题:
(iiii)对于上述一元三次方程,证明:它总可以化为x[sup]3[/sup]+px+q=0的形式。
3.2判别式
判别式对于代数方程的根有着重要的判定作用,下面给出代数方程判别式的定义:一般地,对于代数方程:x[sup]n[/sup]+a[sub]1[/sub]x[sup]n-1[/sup]+……+a[sub]k[/sub]x[sup]n-k[/sup]+……+a[sub]n[/sub]=0,假定其所有的复数根为x[sub]1[/sub],x[sub]2[/sub],……,x[sub]n[/sub],那么此方程的判别式为:
2010-10-1 16:35:23 上传
下载附件
(3.56 KB)
(iiiii)计算一元三次方程x[sup]3[/sup]+px+q=0的判别式,并利用判别式讨论方程根的情况。
4.问题总汇
(i)利用判别式讨论此一元二次方程根的情况。
(ii)设x[sub]1[/sub],x[sub]2[/sub]是此一元二次方程的两根,试将判别式表示成仅含有x[sub]1[/sub],x[sub]2[/sub]和a的代数式。
(iii)叙述并证明当n=3时韦达定理的推广形式。
(iiii)对于上述一元三次方程,证明:它总可以化为x[sup]3[/sup]+px+q=0的形式。
(iiiii)计算一元三次方程x[sup]3[/sup]+px+q=0的判别式,并利用判别式讨论方程根的情况。
[
本帖最后由 石崇的BOSS 于 2010-10-2 21:46 编辑
]
附件:
1道题.gif
(2010-10-1 16:35:23, 3.45 KB) / 下载次数 36
http://bbs.mf8-china.com/forum.php?mod=attachment&aid=MTEzOTAyfGU4MmQxNjlhfDE3NTI4ODQ0NzV8MHww
附件:
22.gif
(2010-10-1 16:35:23, 3.56 KB) / 下载次数 40
http://bbs.mf8-china.com/forum.php?mod=attachment&aid=MTEzOTAzfDQ0NjVkM2NjfDE3NTI4ODQ0NzV8MHww
作者:
不吃鱼的猫
时间:
2010-10-1 16:41:02
好、、烦、、
作为一个初中生 、、偶只想抢sf
作者:
Cielo
时间:
2010-10-1 16:42:12
老师上课讲过的,还有四次方程能转化为三次的,所以也有求根公式,可惜具体我都不记得了
作者:
不吃鱼的猫
时间:
2010-10-1 16:53:02
标题:
回复 2# 的帖子
其实,仔细看看 还是挺简单的、
四次方程?记得以前老师有给我布置这个作业,,狂写了一个晚上、、
作者:
superacid
时间:
2010-10-1 17:44:56
标题:
回复 3# 的帖子
话说五次方程没有求根公式的证明在哪里可以找到呢?
作者:
superacid
时间:
2010-10-1 17:45:12
题目把它一步一步都告诉你了,你一步一步做就可以了
作者:
Cielo
时间:
2010-10-1 18:44:57
原帖由
superacid
于 2010-10-1 17:44 发表
话说五次方程没有求根公式的证明在哪里可以找到呢?
你们学抽象代数应该会讲到吧?
不过我们当时的老师自己不懂就没讲……
欢迎光临 魔方吧·中文魔方俱乐部 (http://bbs.mf8-china.com/)
Powered by Discuz! X2