魔方吧·中文魔方俱乐部

标题: n个等距点不可存在于n-1维以下的空间里面。 [打印本页]

作者: 咖啡味的茶    时间: 2011-7-1 09:33:41     标题: n个等距点不可存在于n-1维以下的空间里面。

试想一下,3个等距点(也就是三角形)不能存在于一维空间,四个等距点不会出现在二维平面,以此类推,n和等距点不会出现在n-2维空间或者以下。谁能给出严格论证呢?
作者: 耗子哥哥    时间: 2011-7-1 09:37:13

不才,理解不了三维以上的空间形式,所以空间想象能力描绘不出来需要的“等距点”。
作者: superacid    时间: 2011-7-1 10:43:34

感觉列个方程组解一下就可以了
作者: ggglgq    时间: 2011-7-1 12:56:55

  
  
  
    这个我证明过,而且还得到了些有趣的性质。
  
  
  
  
作者: 咖啡味的茶    时间: 2011-7-1 14:20:05

那我想知道你的过程。以及你的结论
作者: ggglgq    时间: 2011-7-1 18:08:37

  
  
  
  
    证明用反证法比较容易,下面谈谈我发现的有趣的性质:
  
   
    “正 1 点网”是“1维空间”的“(1-1=) 0维体 (一个点)”,
  
    “正 2 点网”是“2维空间”的“(2-1=) 1维体 (一条线段)”,
  
    “正 3 点网”是“3维空间”的“(3-1=) 2维体 (正三角形)”,
  
    “正 4 点网”是“4维空间”的“(4-1=) 3维体 (正四面体)”,
  
    “正 5 点网”是“5维空间”的“(5-1=) 4维体 (正五胞体)”,
  
                         ......................................
  
    “正 n 点网”是“n维空间”的“(n-1维体 或 正 n-1 胞体)”,
  

   
  
    这些“n-1维体”的“顶点”全部都在“n维空间”的坐标轴的正向单位点上。
  
当然,“n-1维体”的“顶点”也可以在“n维空间”的坐标轴的负向单位点上,
  
大家可以自己研究一下。
  
    即,“n维空间”的 n 个坐标轴的单位点构成“正 n 点网”,这个“正 n 点网”
  
却是“n-1维空间”的。
  
  
    注:以上 “正 n 点网”均为“正 n 点 n-1 连网”的简称。
  
  
  
  
  
  
  
  
作者: 咖啡味的茶    时间: 2011-7-1 18:58:23

其实这种点集是单形的顶点。所谓“正五胞体”就是4-单形。




欢迎光临 魔方吧·中文魔方俱乐部 (http://bbs.mf8-china.com/) Powered by Discuz! X2