As you may remember, my Biaxe is a puzzle with a very simple "inte**ce" (2 rotation axes with 4 positions allowed for each) and hard behaviour (due to presence of stored cuts).
Trapentrix is an attempt to make Biaxe at least a little bit easier. It has 2 axes too, but each with only 3 allowed positions. Another difference with Biaxe is that here I decided to truncate the sharp corners to have nice regular pentagonal faces. Actually it does not matter - sharp corners do not bring anything new.
There is an interesting thing about the mechanism. Unlike Biaxe and its close relative Constellation Six, Trapentrix absolutely does not need any fudging when drawn on the Jaap's sphere (when the conical cuts radially go to the sphere's center). But because cutting planes of the solid do not pass through the center, hidden cavities arise between the sphere and the solid's su**ce. You can see them in the last two pictures.
Why did I call it Trapentrix? Because the faces of this puzzle are TRAPezia, PENTagons and TRIangles. Moreover, playing with this puzzle is a TRAP ENTRY, because it looks deceptively simple, but is really challenging.
I think that this puzzle is my favourite discovery in the irregular geometry. It has relatively few parts, only one cutting plane for each axis and only 4 faces to solve. It neither shape-shifts nor jumbles. There's no bandaging and hidden parts. All you can do is turn one of the two corners left or right. This poor choice makes you feel helpless rather than easy.
Still I could not find any information about this solid and I don't know whether it has a name. Do you?