魔方吧·中文魔方俱乐部

标题: 求教几何题 [打印本页]

作者: jx215    时间: 2012-10-13 22:52:38     标题: 求教几何题

一,如图,正方形ABCD,G是AD上一点,射线CG交射线BA于点E,连接DE,射线BG交DE于F,连接AF,AF交CE于O点
求证:AF⊥CE

3.jpg


二,三角形ABC,BE垂直AC交AC于E,CF垂直AB交AB于F,BE,CF相交于H,AG为BC上中线,连接FE交BC延长线于D,连接DH
1.求证:DH垂直于AG
2.若条件改为DH垂直于AG,BE垂直AC交AC于E,CF交AB于F,交BE于H,其他不变。问H是否是三角形ABC垂心?

2.JPG


三,锐角三角形ABC,D为ABC内一点,连接AD,BD,DC,各角度数如图.求∠DAC度数
(求教纯几何解法过程)

4.jpg

附件: 4.jpg (2012-10-13 22:52:16, 14 KB) / 下载次数 47
http://bbs.mf8-china.com/forum.php?mod=attachment&aid=MTk0MzQ5fGQ3OTI5YzRhfDE3MzI2NzQ0NTd8MHww

附件: 2.JPG (2012-10-13 22:51:05, 18.74 KB) / 下载次数 49
http://bbs.mf8-china.com/forum.php?mod=attachment&aid=MTk0MzQ4fGIyYmM4M2ZifDE3MzI2NzQ0NTd8MHww

附件: 3.jpg (2012-10-13 22:49:26, 24.29 KB) / 下载次数 48
http://bbs.mf8-china.com/forum.php?mod=attachment&aid=MTk0MzQ3fDhlNzA2NzIxfDE3MzI2NzQ0NTd8MHww
作者: FFFUUUFFFHHH    时间: 2012-10-13 23:57:04

敢问 你 上几年级吗
作者: puzzletwister    时间: 2012-10-14 00:03:32

第一题懒得想了,直接用解析几何做的,设个E点坐标求出F点坐标就可以了。 第二题sin<CHD / sin<CHE =CD/DE =sin<ACB /sin<ABC =sin<BAG /sin<CAG => <CHD=<BAG 第三题貌似70度,不会纯几何证法
作者: 前度。    时间: 2012-10-14 00:46:50

这个真是骚完了
作者: tm__xk    时间: 2012-10-14 01:07:29

第二题第一问.
记ABC外心为O,AEHF圆心(即AH中点)为X.
D到此两圆的幂相等,故AD为其根轴==>AD垂直OX
而OX//GH,故H为ADG垂心.
作者: 夜雨听风    时间: 2012-10-14 02:00:23

应该是60度
作者: tm__xk    时间: 2012-10-14 02:56:47

夜雨听风 发表于 2012-10-14 02:00
应该是60度

角元Ceva告诉我们70度..
作者: hunpo    时间: 2012-10-14 08:36:09

怎么有点不高兴的说
作者: jx215    时间: 2012-10-14 11:44:52

puzzletwister 发表于 2012-10-14 00:03
第一题懒得想了,直接用解析几何做的,设个E点坐标求出F点坐标就可以了。 第二题sin

第一题若是纯几何怎么做?

作者: puzzletwister    时间: 2012-10-14 13:00:44

jx215 发表于 2012-10-14 11:44
第一题若是纯几何怎么做?

如果可以用三角函数的话:DF/EF * EB/BA * AG/DG=1 带入AG/DG=AE/CD 得到DF/EF=BA/EB * DC/AE =tan<BEC /tan<EDA 另外从F向AD作垂线即可得到DF/EF = =tan<DAF/tan<EDA 所以<BEC=<DAF。
另外没看到第二题还有一问,貌似可以直接作出垂心H然后利用第一问反证
作者: superacid    时间: 2012-10-14 20:09:05

第二题第二问中DH和AG的夹角貌似有单调性。。故必然是垂心
作者: Victor1    时间: 2012-10-14 21:07:46

这是魔方吧还是数学吧?
作者: aifusen09    时间: 2012-10-14 22:26:47

mark一下,今天酒喝多了,明天看看。 。 。




欢迎光临 魔方吧·中文魔方俱乐部 (http://bbs.mf8-china.com/) Powered by Discuz! X2