魔方吧·中文魔方俱乐部

 找回密码
 注册
搜索
热搜: 魔方
楼主: superacid

各种囚犯问题(第1,2,4(1)已解出) [复制链接]

红魔

All Blue

Rank: 4

积分
1196
帖子
999
精华
2
UID
38845
性别
发表于 2010-12-13 21:09:36 |显示全部楼层
3(3)前半部跟3(1)一樣,先由一個人知道了全部人已經來過。之後他每一次進房都把燈的狀態轉變,其他人從一開始一直數燈轉變的次數(包括自己轉的),正常來說當燈轉變198次後,所有人都已經進過了房間。所以當他們其中一人數到198時,他就知道所有人都已經進過了房間,這樣就有兩人了。
這方法的缺點1:需時太久,2:若獄卒都是挑時間放囚犯進去的,所有囚犯每次進去都看到燈亮著,便失敗了。
這其實是一個作弊的方法。
公式D F2 U L2 U B2 U R2 U R' F2 R L U L' R' U R L' U L U L U2 L' U' L U2 L'
数列11121131221231321332223233311

使用道具 举报

粉魔

牛奶不是酸奶 星星不是流星

Rank: 5Rank: 5

积分
3351
帖子
2298
精华
2
UID
1263542
性别

爱心大使

发表于 2010-12-13 21:14:16 |显示全部楼层
这可真是费脑子
A:你是韩国人?
B:我是中国人!
当魔方成为生活我们的生活必须品
当魔方注入我们的灵魂
当魔方伴随我们终身
One cube , One world
We are cuber,We are family

使用道具 举报

Rank: 4

积分
1802
帖子
1501
精华
0
UID
19971
性别

爱心大使 六年元老

发表于 2010-12-13 21:18:19 |显示全部楼层
就看了第一个,后面的大概看了看,戴帽子的那个知道答案,灯泡的以前也看过.
我想说说第1个.
如果一个囚徒知道其余99个囚徒的号码,又怎么会不知道自己的号码呢???????
苏格拉底曾经说过,一个人的要求越少,他才会离上帝越近。如果真是这样,那么我应该听得到上帝的呼吸。也许,生活原本如此,一半是火焰,一半是海洋。。。

使用道具 举报

红魔

All Blue

Rank: 4

积分
1196
帖子
999
精华
2
UID
38845
性别
发表于 2010-12-13 22:04:30 |显示全部楼层

回复 23# 的帖子

號碼有重複的,請看題
公式D F2 U L2 U B2 U R2 U R' F2 R L U L' R' U R L' U L U L U2 L' U' L U2 L'
数列11121131221231321332223233311

使用道具 举报

Rank: 7Rank: 7Rank: 7

积分
2520
帖子
3072
精华
7
UID
62890
性别

中国纪录 八年元老

发表于 2011-2-13 17:01:29 |显示全部楼层
没事顶一下吧,题目还是挺有意思的
19events = 644days
PB (2 3 4 5)B = 1200seconds
北大魔方爱好者QQ群74893945
mf8最少步讨论群:RP与公式的绝佳配合QQ群5652935

使用道具 举报

Rank: 4

积分
1206
帖子
1153
精华
0
UID
82168
性别
保密
居住地
其他
兴趣爱好
破解
理论
其它

八年元老

发表于 2011-7-2 03:17:43 |显示全部楼层
都木有人了..放个第5题的标准解..
事先编号.
每个人的选择为其他人逆序数与自身编号之和mod2.
不多解释了.
不知不觉这个号就申了四年多了吖..关键是还有密码登..
赶脚还有另一个号..也不造是哪个新点..

一眨眼都八年多了....

使用道具 举报

积分
2
帖子
2
精华
0
UID
1322616
性别
居住地
南京市
发表于 2012-12-27 10:53:59 |显示全部楼层
顶起,思考中。。。

使用道具 举报

积分
3
帖子
3
精华
0
UID
1327974
性别
保密
居住地
白山市
兴趣爱好
速度
破解
发表于 2013-8-8 19:52:05 来自手机 |显示全部楼层
能不能解决了??

使用道具 举报

Rank: 1

积分
113
帖子
113
精华
0
UID
1323596
性别
居住地
蚌埠市
发表于 2013-12-27 22:35:13 |显示全部楼层
关于灯泡的,我觉得可以让每一个第一次出来的囚徒闪一次灯,第一个一下,第二个两下,重复的不闪或者闪原来已经闪过的次数,这样,就会在某一时刻1至100每个数都闪过,不过灯质量要好才行…………

使用道具 举报

积分
1
帖子
1
精华
0
UID
1334532
性别
保密
兴趣爱好
其它
发表于 2014-12-13 15:32:15 |显示全部楼层
哎呀花了很大力气终于做出第五题了,心里很高兴。特地注册一个号给大家讲讲。

首先每个人看到的信息,本质上就是排成一行的大小序列

每个人要是可以猜出自己对应的实数的大小所在位置的奇偶性,奇的和偶的戴手套顺序不同,问题就解决了

可是呢,每个人都看不到自己的实数,也就不知道自己所在的位置

我们计划创造一个规则,通过看到别人带的实数猜到自己的实数。你可以说,不可能呀。我们的目标是,让所有人或者都猜对,或者都猜错,这样问题也能解决。

如何保证或者都猜对,或者都猜错呢?实际上,只需要保证任何两个编号相邻的人,他们猜的奇偶性不同,这样就可以啦。

那么我们很容易联想到置换的奇偶性。每个人都能看到一个置换,那就是把他看到的最小的实数记作1,最大的记作99,从自己顺时针的下一位开始顺时针走得到的排列。

两个对应实数相邻的人,他们看到对方的实数在其他所有人中的位置也是相同的。这样,两个对应实数相邻的人看到的置换之间,是有对应规律联系着的。

稍加研究,就能发现规律是这样:执行若干次长为99的轮换,再执行若干次对换,对换执行次数的奇偶性取决于他们之间夹着奇数个人还是偶数个人,也就是他们的距离是偶数还是奇数。
那么,如果每个人直接猜置换的奇偶性的话,他们两个在距离为偶数时所猜不同,在距离为奇数时所猜相同。
我们进行一个微调:提前选定一个人,在游戏进行时,把所有人染成黑白两色(当然是在想象中),使得被选定的人被染成黑色。被染成黑色的人,反转对自己奇偶性的猜测。

这样,问题就解决了~

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

Archiver|手机版|魔方吧·中文魔方俱乐部

GMT+8, 2019-6-19 08:45

Powered by Discuz! X2

© 2001-2011 Comsenz Inc.

回顶部