魔方吧·中文魔方俱乐部

 找回密码
 注册
搜索
热搜: 魔方
楼主: 钟七珍

圆上作弦的概率问题 [复制链接]

透魔

小朱

Rank: 6Rank: 6

积分
5210
帖子
5631
精华
1
UID
34654
性别

八年元老 十年元老

发表于 2008-9-2 22:34:04 |显示全部楼层
不小心又错了,应是3分之1

使用道具 举报

Rank: 2

积分
333
帖子
276
精华
1
UID
40058
性别
保密
发表于 2008-9-3 20:47:33 |显示全部楼层
<P>
原帖由 <I>钟七珍</I> 于 2008-4-14 15:47 发表 <A href="http://bbs.mf8-china.com/redirect.php?goto=findpost&amp;pid=112794&amp;ptid=7719" target=_blank><IMG alt="" src="http://bbs.mf8-china.com/images/common/back.gif" border=0></A>     解法四:  这是我的解题思路。   为了最大限度地满足“随机取”、“任意取”这一要求,我把取点范围放到无限平面上。但为了保证作出的直线与圆相割,所以必须至少把其中一个点放在圆平面内,而 ...
</P>
<P>个人认为凡直线与圆相交的概率问题基本都涉及到圆周率,估计这个答案更可信。</P>

使用道具 举报

Rank: 1

积分
13
帖子
12
精华
0
UID
24490
性别
保密
发表于 2008-9-4 21:58:48 |显示全部楼层
认真分析上述解题过程可知,产生不同答案的根本原因仅仅是题目中“任作一弦”的含义不清。对“任作”二字持不同的理解,就会得到不同的答案:理解为在圆周上任取两点连成一弦,所求概率为1/3,理解为在固定半径上任取一点作与此半径垂直的弦,答案为1/2,理解为在固定半径上任取一点作为弦的中点而作弦,所求概率为1/4。三种不同的理解对应着不同的随机试验,从而有不同的样本点和样本空间。所以答案就会不同。

使用道具 举报

Rank: 2

积分
333
帖子
276
精华
1
UID
40058
性别
保密
发表于 2008-9-6 09:22:55 |显示全部楼层
<P>后来又想了一下,也许LZ1/2的答案是对的。<BR>在圆内随机取弦,无非是随机做圆的割线。因为圆是“完美”对称的,所以对割线方向进行设定应该是没有意义的,只要取一个方向上的考虑即可,其他方向也都有相同的概率。<BR>如图,在某一方向上能产生符合要求弦的割线数占总数的一半,对吧?那答案应该是1/2吧?</P>
<P> xian.jpg
</P>

使用道具 举报

Rank: 7Rank: 7Rank: 7

积分
1298
帖子
925
精华
0
UID
37321
性别
保密
发表于 2008-9-6 11:28:43 |显示全部楼层
我觉得应该把园内所有平行的玹(只取一组),然后画出这些线的垂线(某一条直径),然后算一下能大于内接正三角形和小于的点的比(也就是线段长度

使用道具 举报

红魔

Atato!

Rank: 4

积分
2328
帖子
2003
精华
1
UID
26065
性别

六年元老

发表于 2008-9-7 10:52:00 |显示全部楼层
<P>24#的有道理.</P>

[ 本帖最后由 Atato 于 2008-9-7 11:00 编辑 ]
如果最初的想法不是荒谬的, 那么它就毫无希望.
                                                                      -阿尔伯特·爱因斯坦

使用道具 举报

红魔

Atato!

Rank: 4

积分
2328
帖子
2003
精华
1
UID
26065
性别

六年元老

发表于 2008-9-7 11:00:30 |显示全部楼层
<P>
原帖由 <I>ares_g</I> 于 2008-9-3 20:47 发表 <A href="http://bbs.mf8-china.com/redirect.php?goto=findpost&amp;pid=231242&amp;ptid=7719" target=_blank><IMG alt="" src="http://bbs.mf8-china.com/images/common/back.gif" border=0></A> 个人认为凡直线与圆相交的概率问题基本都涉及到圆周率,估计这个答案更可信。
</P>
<P>这个不对吧.现在教科书上好多求弦长的都是1/3的答案.而且与圆周率无关诶.</P>
<P>&nbsp;</P>
<P>我也觉得题目有问题-0-</P>
如果最初的想法不是荒谬的, 那么它就毫无希望.
                                                                      -阿尔伯特·爱因斯坦

使用道具 举报

Rank: 2

积分
421
帖子
233
精华
2
UID
25681
性别
保密
发表于 2008-9-7 11:34:15 |显示全部楼层
<P>如果认为弦是均匀分布,需要对“均匀”进行定义,可以是弦中点在直径方向均匀(1/2),弦端点圆周上均匀(1/3)或者弦中点在圆面上均匀(1/4),这样才能得到唯一答案。 </P>
<P>&nbsp;</P>
<P>我觉得,任做一弦有些蒙特卡洛随机试验的味道,也就是大量试验条件下的统计概率。 </P>
<P>&nbsp;</P>
<P>虽然通过圆心的点可以做无数条弦,但是随机试验点落在圆心的概率为零。举个例子,弦长为sqrt(3)的弦有无穷多条,但如果我说弦长大于sqrt(3)的概率和弦长大于等于sqrt(3)的概率相等,应该没人反对吧?呵呵,这是因为随机试验点落在半径为1/2的圆上的概率同样为零。在大量试验条件下,即便有落在圆心上的弦,它也仅代表那一次随机试验,而不能影响整个概率的计算结果。 </P>
<P>&nbsp;</P>
<P>总之,如果认为弦中点在圆面上均匀分布,概率是1/4,其他答案也必须在对应的均匀定义下才有意义。 </P>

使用道具 举报

Rank: 2

积分
514
帖子
249
精华
1
UID
13428
性别
发表于 2008-9-7 12:31:26 |显示全部楼层
<P>随机,直线XY座标均匀分布,但要与圆周相交才成为弦,不用考虑弦的角度,什么角度概率都是一样的。</P>
<P>BD:AE=1/2</P>
<P>&nbsp;</P>
question2.gif

使用道具 举报

Rank: 2

积分
333
帖子
276
精华
1
UID
40058
性别
保密
发表于 2008-9-7 20:10:50 |显示全部楼层
我想,LZ只说了做弦,没有说做点后再做弦,如果先做点了那靠近圆心的弦出现的概率岂不会增加很多?

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

Archiver|手机版|魔方吧·中文魔方俱乐部

GMT+8, 2019-6-19 09:42

Powered by Discuz! X2

© 2001-2011 Comsenz Inc.

回顶部