<P>四阶降阶法也可最后复原心块,这是在看了盲拧区<A href="http://bbs.mf8-china.com/viewthread.php?tid=4781&extra=&page=3">http://bbs.mf8-china.com/viewthread.php?tid=4781&extra=&page=3</A>一帖中关于“转换器”的讨论后得到的想法。</P>
<P> </P>
<P>一般,四阶先复原心块,再合并棱块,再按照三阶复原棱和角。有些“转换器”就是不破坏棱和角当时的状态而三轮换某三个心块的公式。使用它之前可以临时调动要三轮换的三个心块到符合转换器所要求的位置,转换后再做逆调动,就避免了破坏棱和角的原状(故特适用于盲拧)。这样,就可以先复原棱和角之后,再用转换器复原心块。</P>
<P> </P>
<P>原来降阶法所用的复原心块的公式,有些也具有转换器性质。</P>
<P> </P>
<P>下两图演示用一种转换器(D'b2DfD'b2Df')复原一部分心块,再用另一对互逆的转换器(UMRU'ML'UMR'U'ML 和 ML'UMRU'MLUMR'U')复原另一部分心块。过程并不是最优的,就算是“无事忙”吧。</P>
<applet code="RevengePlayer.class" codebase=4 width="300" height="300">
<param name="scrptLanguage" value="SupersetENG">
<param name="scrpt" value="CR' CF' R (D' MB2 D MF D' MB2 D MF') R' CU' (D' MB2 D MF D' MB2 D MF')U2 R'(D' MB2 D MF D' MB2 D MF') R U2 CF' CU'(D' MB2 D MF D' MB2 D MF') U'(D' MB2 D MF D' MB2 D MF') U CF' CU U R D'(D' MB2 D MF D' MB2 D MF') D R' U' U' R D'(D' MB2 D MF D' MB2 D MF') D R' U ">
<param name="stickersFront" value="0,0,0,0,0,4,2,0,0,1,2,0,0,0,0,0">
<param name="stickersRight" value="1,1,1,1,1,2,1,1,1,4,0,1,1,1,1,1">
<param name="stickersDown" value="2,2,2,2,2,0,5,2,2,4,0,2,2,2,2,2">
<param name="stickersBack" value="3,3,3,3,3,4,3,3,3,5,2,3,3,3,3,3">
<param name="stickersLeft" value="4,4,4,4,4,3,3,4,4,3,0,4,4,4,4,4">
<param name="stickersUp" value="5,5,5,5,5,1,1,5,5,5,5,5,5,5,5,5">
</applet> <applet code="RevengePlayer.class" codebase=4 width="300" height="300">
<param name="scrptLanguage" value="SupersetENG">
<param name="scrpt" value=" CF' CU (U MR U' ML' U MR' U' ML) CU' U2 ( ML' U MR U' ML U MR' U') U2 CF' ( ML' U MR U' ML U MR' U')U' F2 (U MR U' ML' U MR' U' ML)U'(U MR U' ML' U MR' U' ML) U F2 U ">
<param name="stickersFront" value="2,2,2,2,2,0,4,2,2,2,0,2,2,2,2,2">
<param name="stickersRight" value="4,4,4,4,4,0,4,4,4,0,4,4,4,4,4,4">
<param name="stickersDown" value="0,0,0,0,0,2,2,0,0,2,4,0,0,0,0,0">
<param name="stickersBack" value="5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5">
<param name="stickersLeft" value="1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1">
<param name="stickersUp" value="3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3">
</applet> |