- 最后登录
- 2024-11-30
- 在线时间
- 9226 小时
- 阅读权限
- 20
- 注册时间
- 2005-1-31
- 积分
- 18050
- 帖子
- 16478
- 精华
- 9
- UID
- 449
- 性别
- 男
- 积分
- 18050
- 帖子
- 16478
- 精华
- 9
- UID
- 449
- 性别
- 男
|
本帖最后由 乌木 于 2014-2-1 21:03 编辑
小鱼宝儿 发表于 2014-2-1 16:55
的确是我错了,最终答案是不是3*2^4/2-3+12*2*2^2/2-12=57?
其实我对这类排列组合问题是搞不大清的,搞不好就弄错。下面试试说一下“相对两面未复原而其余四面已复原”的状态数,不知说的对不对。
设顶面和底面未复原,此时角块都已复原来着,且不可变化,唯一可变的是FU和FD,RU和RD,BU和BD,LU和LD四对棱块分别交换或不交换,所以,变化数为
〔(2^4)/2 - 1〕x 3=21 。
除以2是因为二交换的总次数必须为偶数,排除奇数次二交换的状态。
减去1是因为有一个状态是顶面和底面也复原,即魔方有六面复原了,不属于四面复原态。
乘以3是作为顶底色的颜色对子数目为3对。
|
|