下面是深切五魔方的数据:
//以下是每转动一层一个顺时针72度后,新的魔方各个面颜色的轮换,12个面,共12个轮换的数据
private static final short[][] lh=
{
//1
{1,3,5,7,9, 49,59,19,29,39, 51,11,21,31,41,
2,4,6,8,10, 60,20,30,40,50,
48,58,18,28,38, 52,12,22,32,42},
//2
{11,13,15,17,19, 3,57,67,79,21, 59,69,71,23,5,
12,14,16,18,20, 58,68,80,22,4,
2,56,66,78,30, 60,70,72,24,6},
//3
{21,23,25,27,29, 5,17,77,89,31, 19,79,81,33,7,
22,24,26,28,30, 18,78,90,32,6,
4,16,76,88,40, 20,80,82,34,8},
//4
{31,33,35,37,39, 7,27,87,99,41, 29,89,91,43,9,
32,34,36,38,40, 28,88,100,42,8,
6,26,86,98,50, 30,90,92,44,10},
//5
{41,43,45,47,49, 9,37,97,109,51, 39,99,101,53,1,
42,44,46,48,50, 38,98,110,52,10,
8,36,96,108,60, 40,100,102,54,2},
//6
{51,53,55,57,59, 1,47,107,69,11, 49,109,61,13,3,
52,54,56,58,60, 48,108,70,12,2,
10,46,106,68,20, 50,110,62,14,4},
//7
{61,63,65,67,69, 55,105,119,71,13, 107,111,73,15,57,
62,64,66,68,70, 106,120,72,14,56,
54,104,118,80,12, 108,112,74,16,58},
//8
{71,73,75,77,79, 15,65,117,81,23, 67,119,83,25,17,
72,74,76,78,80, 66,118,82,24,16,
14,64,116,90,22, 68,120,84,26,18},
//9
{81,83,85,87,89, 25,75,115,91,33, 77,117,93,35,27,
82,84,86,88,90, 76,116,92,34,26,
24,74,114,100,32, 78,118,94,36,28},
//10
{91,93,95,97,99, 35,85,113,101,43, 87,115,103,45,37,
92,94,96,98,100, 86,114,102,44,36,
34,84,112,110,42, 88,116,104,46,38},
//11
{101,103,105,107,109, 45,95,111,61,53, 97,113,63,55,47,
102,104,106,108,110, 96,112,62,54,46,
44,94,120,70,52, 98,114,64,56,48},
//12
{111,113,115,117,119, 63,103,93,83,73, 105,95,85,75,65,
112,114,116,118,120, 104,94,84,74,64,
62,102,92,82,72, 106,96,86,76,66}
};
private static final short[][] bh1=
{
{16,1,13}, {19,1,16}, {22,1,19}, {25,1,22}
};
private static final short[][] bh2=
{
{17,1,14}, {20,1,17}, {23,1,20}, {26,1,23},
{18,1,15}, {21,1,18}, {24,1,21}, {27,1,24}
};
private static final short[][] bh4=
{
{28,2,26}, {29,1,28}, {30,1,29}, {31,1,30}, {32,1,31},
{33,2,27}, {34,1,33}, {35,1,34}, {36,1,35}, {37,1,36},
{38,2,13}, {39,1,38}, {40,1,39}, {41,1,40}, {42,1,41},
{64,2,14}, {65,1,64}, {66,1,65}, {67,1,66}, {63,1,67},
{59,2,15}, {60,1,59}, {61,1,60}, {62,1,61}, {58,1,62},
{54,2,16}, {55,1,54}, {56,1,55}, {57,1,56}, {53,1,57},
{43,2,28}, {44,1,43}, {45,1,44}, {46,1,45}, {47,1,46},
{48,2,33}, {49,1,48}, {50,1,49}, {51,1,50}, {52,1,51},
{69,2,64}, {70,1,69}, {71,1,70}, {72,1,71}, {68,1,72},
{74,2,59}, {75,1,74}, {76,1,75}, {77,1,76}, {73,1,77},
{79,2,54}, {80,1,79}, {81,1,80}, {82,1,81}, {78,1,82},
{90,2,49}, {91,1,90}, {92,1,91}, {88,1,92}, {89,1,88},
{85,2,44}, {86,1,85}, {87,1,86}, {83,1,87}, { 84,1,83},
{5,2,1}, {6,1,5}, {2,1,6}, {3,1,2}, {4,1,3},
{10,2,5}, {11,1,10}, {7,1,11}, {8,1,7}, {9,1,8}
};
private static final short[][] QJmoqiu=
{
{0,0,0,0,0,0,0},
//////////////////////1
{1,17,16,15,1,1,1},
{1,18,17,1,1,1,1},
{1,20,19,18,1,1,1},
{1,21,20,1,1,1,1},
{1,23,22,21,1,1,1},
{1,24,23,1,1,1,1},
{1,26,25,24,1,1,1},
{1,27,26,1,1,1,1},
{1,14,13,27,1,1,1},
{1,15,14,1,1,1,1},
/////////////////////2
{2,30,19,20,2,2,2},
{2,35,30,2,2,2,2},
{2,66,40,35,2,2,2},
{2,61,66,2,2,2,2},
{2,51,56,61,2,2,2},
{2,46,51,2,2,2,2},
{2,36,41,46,2,2,2},
{2,31,36,2,2,2,2},
{2,21,22,31,2,2,2},
{2,20,21,2,2,2,2},
////////////////////3
{3,31,22,23,3,3,3},
{3,36,31,3,3,3,3},
{3,67,41,36,3,3,3},
{3,62,67,3,3,3,3},
{3,52,57,62,3,3,3},
{3,47,52,3,3,3,3},
{3,37,42,47,3,3,3},
{3,32,37,3,3,3,3},
{3,24,25,32,3,3,3},
{3,23,24,3,3,3,3},
///////////////////4
{4,32,25,26,4,4,4},
{4,37,32,4,4,4,4},
{4,63,42,37,4,4,4},
{4,58,63,4,4,4,4},
{4,48,53,58,4,4,4},
{4,43,48,4,4,4,4},
{4,33,38,43,4,4,4},
{4,28,33,4,4,4,4},
{4,27,13,28,4,4,4},
{4,26,27,4,4,4,4},
///////////////////5
{5,28,13,14,5,5,5},
{5,33,28,5,5,5,5},
{5,64,38,33,5,5,5},
{5,59,64,5,5,5,5},
{5,49,54,59,5,5,5},
{5,44,49,5,5,5,5},
{5,34,39,44,5,5,5},
{5,29,34,5,5,5,5},
{5,15,16,29,5,5,5},
{5,14,15,5,5,5,5},
/////////////////6
{6,29,16,17,6,6,6},
{6,34,29,6,6,6,6},
{6,65,39,34,6,6,6},
{6,60,65,6,6,6,6},
{6,50,55,60,6,6,6},
{6,45,50,6,6,6,6},
{6,35,40,45,6,6,6},
{6,30,35,6,6,6,6},
{6,18,19,30,6,6,6},
{6,17,18,6,6,6,6},
/////////////////7
{7,71,55,50,7,7,7},
{7,76,71,7,7,7,7},
{7,92,81,76,7,7,7},
{7,87,92,7,7,7,7},
{7,77,82,87,7,7,7},
{7,72,77,7,7,7,7},
{7,61,56,72,7,7,7},
{7,66,61,7,7,7,7},
{7,45,40,66,7,7,7},
{7,50,45,7,7,7,7},
////////////////8
{8,72,56,51,8,8,8},
{8,77,72,8,8,8,8},
{8,88,82,77,8,8,8},
{8,83,88,8,8,8,8},
{8,73,78,83,8,8,8},
{8,68,73,8,8,8,8},
{8,62,57,68,8,8,8},
{8,67,62,8,8,8,8},
{8,46,41,67,8,8,8},
{8,51,46,8,8,8,8},
///////////////9
{9,68,57,52,9,9,9},
{9,73,68,9,9,9,9},
{9,89,78,73,9,9,9},
{9,84,89,9,9,9,9},
{9,74,79,84,9,9,9},
{9,69,74,9,9,9,9},
{9,58,53,69,9,9,9},
{9,63,58,9,9,9,9},
{9,47,42,63,9,9,9},
{9,52,47,9,9,9,9},
//////////////10
{10,69,53,48,10,10,10},
{10,74,69,10,10,10,10},
{10,90,79,74,10,10,10},
{10,85,90,10,10,10,10},
{10,75,80,85,10,10,10},
{10,70,75,10,10,10,10},
{10,59,54,70,10,10,10},
{10,64,59,10,10,10,10},
{10,43,38,64,10,10,10},
{10,48,43,10,10,10,10},
//////////////11
{11,70,54,49,11,11,11},
{11,75,70,11,11,11,11},
{11,91,80,75,11,11,11},
{11,86,91,11,11,11,11},
{11,76,81,86,11,11,11},
{11,71,76,11,11,11,11},
{11,60,55,71,11,11,11},
{11,65,60,11,11,11,11},
{11,44,39,65,11,11,11},
{11,49,44,11,11,11,11},
///////////////////12
{12,86,81,92,12,12,12},
{12,91,86,12,12,12,12},
{12,85,80,91,12,12,12},
{12,90,85,12,12,12,12},
{12,84,79,90,12,12,12},
{12,89,84,12,12,12,12},
{12,83,78,89,12,12,12},
{12,88,83,12,12,12,12},
{12,87,82,88,12,12,12},
{12,92,87,12,12,12,12}
};
private static final short[][] moqiu1=
{
{0,0,0,0,0,0,0,0},
{13,16,19,22,25,1,0,1},
{19,40,56,41,31,2,0,2},
{22,41,57,42,25,3,0,3},
{25,42,53,38,13,4,0,4},
{13,38,54,39,16,5,0,5},
{16,39,55,40,19,6,0,6},
{40,55,81,82,56,7,0,7},
{56,82,78,57,41,8,0,8},
{57,78,79,53,42,9,0,9},
{53,79,80,54,38,10,0,10},
{54,80,81,55,39,11,0,11},
{79,78,82,81,80,12,0,12}
};
private static final short[][] moqiu2=
{
{0,0,0,0,0,0,0,0},
{35,36,37,33,34,0,0,0},
{50,77,62,24,17,0,0,0},
{51,73,58,27,20,0,0,0},
{23,52,74,59,15,0,0,0},
{26,48,75,60,18,0,0,0},
{14,49,76,61,21,0,0,0},
{30,65,91,83,46,0,0,0},
{66,92,84,47,31,0,0,0},
{67,88,85,43,32,0,0,0},
{63,89,86,44,28,0,0,0},
{64,90,87,45,29,0,0,0},
{70,69,68,72,71,0,0,0}
};
private static final int[][] colors=
{
{0,0,0},
{255,0,0},
{0,140,0},
{0,0,255},
{255,0,255},
{255,200,0},
{0,255,255},
{255,128,255},
{255,255,128},
{255,255,255},
{128,255,128},
{128,128,255},
{255,128,50},
{230,255,240}
};
对应的魔方:
|