- 最后登录
- 2014-2-15
- 在线时间
- 66 小时
- 阅读权限
- 20
- 注册时间
- 2010-4-22
- 积分
- 206
- 帖子
- 176
- 精华
- 0
- UID
- 1257377
- 性别
- 女
- 积分
- 206
- 帖子
- 176
- 精华
- 0
- UID
- 1257377
- 性别
- 女
|
8#
发表于 2012-8-16 12:55:07
来自手机
|只看该作者
本帖最后由 superacid 于 2012-8-16 19:53 编辑
本题等价于对任意a,b,c>0,sum{a/(1+a+ab)}<=1(sum表示循环和,sum{a/(1+a+ab)}=a/(1+a+ab)+b/(1+b+bc)+c/(1+c+ca))
令a=ky/x,b=kz/y,c=kx/z,于是化简之后变成
sum{ky/(x+ky+k^2z)}<=1=sum{y/(x+y+z)}
移项后变为sum{y*(k/(x+ky+k^2z)-1/(x+y+z))}<=0
左边=sum{((k-1)(x-kz)y/((x+y+z)(x+ky+k^2z))}
=((k-1)/(x+y+z)*sum{(x-kz)y/(x+ky+k^2z)}
sum{(x-kz)y/(x+ky+k^2z)}=sum{xy/(x+ky+k^2z)}-sum{kyz/(x+ky+k^2z)}
=sum{xy/(x+ky+k^2z)}-sum{yz/(x/k+y+kz)}
=sum{xy/(x+ky+k^2z)}-sum{xy/(z/k+x+ky)}=sum{xy/(x+ky+k^2z)}-sum{xy/(x+ky+z/k)}
=sum{xy*(1/(x+ky+k^2z)-1/(x+ky+z/k)}
=sum{xyz(1/k-k^2)/((x+ky+k^2z)(x+ky+z/k))}=xyz*(1-k)(1+k+k^2)/k*sum{1/((x+ky+k^2z)(x+ky+z/k))}
于是(k-1)/(x+y+z)*sum{(x-kz)y/(x+ky+k^2z)}=-(1-k)^2*(1+k+k^2)/k*xyz/(x+y+z)*sum{1/((x+ky+k^2z)(x+ky+z/k))}显然<=0
finish |
|