2018年,TP博物馆总计收录了41个由著名设计师Oskar van Deventer设计的魔方。上次Oskar一年设计超过40个魔方,还要追溯到2010年。而在这41个魔方中,有足足14个的设计源头指向了一个帖子——Bram Cohen的“Making Nonjumbling Puzzles Great Again”。这14个魔方,每一个都极度不常规:7个平面魔方看似简单,实则与所有之前的平面魔方都差别颇大;7个三维的魔方中好几个更是让人一头雾水。
由于我们最熟悉的“角块”是一种“1/3”块,我们还是先回到C=1/3的情形。(A, B)=(6, 6)是一个解,(A, B)=(4, 12)是另一个解。前者就是Hex Shaper对应的几何,通过之前的“变化切割深度”技术,在这里就是变化圆的大小和距离技术,或者也可以理解为高阶平面魔方的捆绑,就得到Weird Disk 6x6;后者可以得到Weird Disk 4x12。
然而,我们要如何解读“在无限大的球面上夹角为180度”呢?有一个笑话或许能解释一下:给数学家和物理学家一些木头,叫他们搭建出一个篱笆围住尽量大的区域,物理学家会用掉所有材料建造一个大圆,而数学家会用很少的木头把自己周围围住,并定义自己在圆的外部——这个时候,整个地球除了这个小圆,剩下的区域都是被“围住”的。此时,这个小圆和“大圆”的圆心向量夹角就是180度。对于三维的情形,转动“大圆”是一个Deeper-than-origin的旋转;而对于平面的情形,就是说其中一个轴自然的转动是转动圆之外的所有部分。这么说似乎有点抽象,来看一个例子吧:Weird Disk 2x(-6)。
在Oskar制作的Weird Disk系列中,还有3个比较特殊的没有介绍过。第一个是Weird Disk 5x7。它是(5, 7, 1/3)轴类的产物,此时两个轴的夹角是26.16度,比较接近0,于是Oskar就把它也归入了Weird Disk的系列。同样我们可以“逆转切割深浅”,得到另一个Weird Disk 7x5。
然而,Bram研究的目的本身就不是分类无jumble轴类,而是“在恰当的切割深度下哪些几何能够无jumble”。从这个角度看,这一次“旷日持久”的讨论是相对成功的。这个“恰当的”切割深度指的是“足够浅”,但在传统意义下不一定是浅切,甚至Deeper-than-origin切割是十分常见的,Very Deep Cube为了展现角块更是其中一道切割极深。