魔方吧·中文魔方俱乐部

 找回密码
 注册
搜索
热搜: 魔方
查看: 119312|回复: 19
打印 上一主题 下一主题

跷跷板原理的证明? [复制链接]

Rank: 1

积分
89
帖子
70
精华
0
UID
72354
性别
保密
跳转到指定楼层
1#
发表于 2009-4-9 13:27:18 |只看该作者 |正序浏览
怎么证明的啊?

在魔方组合原理中当公设?

不可靠吧..


大家没看过置顶帖中的魔方组合原理吗...

里面提出的跷跷板原理..

没有证明饿..

[ 本帖最后由 longqi2008 于 2009-4-10 06:55 编辑 ]

Rank: 4

积分
2562
帖子
2236
精华
1
UID
4575
兴趣爱好
其它

十四年元老

20#
发表于 2013-9-4 21:02:52 |只看该作者
乌木 发表于 2009-4-10 10:31
证明我不会,pengw、邱志红等的文章有证明的吧?
我试试作些实验解释解释,不是证明。
从复原态出发(纯粹 ...

这是典型的空穴法应用。

使用道具 举报

Rank: 1

积分
89
帖子
70
精华
0
UID
72354
性别
保密
19#
发表于 2009-4-16 12:33:59 |只看该作者
原来如此!
果然是高手!
真是妙!
赞~~~

谢谢乌木先生了~~

使用道具 举报

Rank: 8Rank: 8

积分
18050
帖子
16478
精华
9
UID
449
性别

魔方理论探索者 论坛建设奖 爱心大使 十年元老

18#
发表于 2009-4-15 22:49:35 |只看该作者
我接着14楼想下去。
“所有表层转对于任何态,每一转所涉及的四角色向和都不变。”这句话的证明好像是蛮容易的吧?
U、U'、U2、D、D'、D2--不改变顶层四角或底层四角的色向,当然色向和也不变。这简直是公理嘛!
R 一转--4号位上的角块到3号位,色向编码减少1(若是0变成2就是3变成2,也是减少1);3号位上的角块到7号位,色向编码增加1(若是2变成0就是2变成3,也是增加1);7号位上的角块到8号位,编码增加2(就是减少1);8号位上的角块到4号位,编码增加1。分别是-1、+1、-1和+1,所以四个角块色向编码和不变。
R'--类推,也是四角色向和不变。
R2--四个角块色向编码不变,色向和也就不变。
对于其余三面的共9个动作,结论一样。
所以,所有表层转对于任何态,每一转所涉及的四角色向和都不变。

[ 本帖最后由 乌木 于 2009-4-15 22:57 编辑 ]

使用道具 举报

Rank: 1

积分
89
帖子
70
精华
0
UID
72354
性别
保密
17#
发表于 2009-4-15 12:52:01 |只看该作者
原帖由 Cielo 于 2009-4-14 13:48 发表


忍大师以前的文章里面的“N阶定律”就是类似这样的“猜想”,不知道楼主看过没有。
证明也可以自己先想想啊!




哦...我目前只注意看了魔方组合原理一书..证明待我想想。

使用道具 举报

透魔

有空了学学4D二阶

Rank: 6Rank: 6

积分
5924
帖子
3936
精华
0
UID
1290
兴趣爱好
结构
理论

魔方破解达人 八年元老

16#
发表于 2009-4-14 13:48:32 |只看该作者
原帖由 longqi2008 于 2009-4-14 13:33 发表
恩。所有表层转对于任何态,每一转所涉及的四角色向和都不变。
是个不错的猜想!
期待证明呀!~~


忍大师以前的文章里面的“N阶定律”就是类似这样的“猜想”,不知道楼主看过没有。
证明也可以自己先想想啊!

使用道具 举报

Rank: 1

积分
89
帖子
70
精华
0
UID
72354
性别
保密
15#
发表于 2009-4-14 13:33:50 |只看该作者
恩。所有表层转对于任何态,每一转所涉及的四角色向和都不变。
是个不错的猜想!
期待证明呀!~~

使用道具 举报

Rank: 8Rank: 8

积分
18050
帖子
16478
精华
9
UID
449
性别

魔方理论探索者 论坛建设奖 爱心大使 十年元老

14#
发表于 2009-4-14 05:37:39 |只看该作者

回复 13# 的帖子

你说得对,上面那些实验不是证明。如何证明我不会,下面所说仍是一种实验、猜想、推论。
楼主的问题,就三阶角块的色向变化来说,如何体现跷跷板原理?我试着说说。
任取一个打乱态,角块的色向用站长介绍的盲拧法,转顶、转底,不改变涉及的四个角块的色向和;转右、转左、转前、转后,无论顺转、逆转或180度转,分别都是仅改变涉及的四个角块的色向,但不改变这四角的色向和(指色向和除以3之后的余数不变)。
这实验结果当然出自不多的打乱态,也不可能对所有态做实验,我只能由此作一猜想--所有表层转对于任何态,每一转所涉及的四角色向和都不变。
复原态的8个角块的色向和为零(这不用证明,是定义);任一打乱态都是六个表层的转动得到的(这也不用证明,是条件,即不是拆了随机组装);既然每一表层转都不改变所涉四角的色向和,也就不改变八角的色向和,所以所有打乱态的八角色向和始终为零。
好,任选两个这样的态,它们的八角位置态一样但色向态不同,比较一下,如果有a个角块发生了顺翻色,必定有a个角块发生了逆翻色(但是这些翻色不一定出现在2a个角块上,可以小于2a,即有些角块不止一次翻色)。这样才能保持八角色向和为零。
a个角块顺翻色对应着a个角块逆翻色,这就体现了跷跷板原理。
所以,只剩下上面那猜想等待严格证明。我不会了。

[ 本帖最后由 乌木 于 2009-4-14 07:03 编辑 ]

使用道具 举报

Rank: 1

积分
89
帖子
70
精华
0
UID
72354
性别
保密
13#
发表于 2009-4-13 19:05:33 |只看该作者
关于乌木先生的实验。我不怎么喜欢。
毕竟证明是严谨的。
而实验是客观的。

例如,你可以实验,任何一个偶数都是两个素数之和。

使用道具 举报

Rank: 1

积分
89
帖子
70
精华
0
UID
72354
性别
保密
12#
发表于 2009-4-11 17:13:00 |只看该作者
当然看过,如此重要的群论能不看么?

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

Archiver|手机版|魔方吧·中文魔方俱乐部

GMT+8, 2024-11-27 06:36

Powered by Discuz! X2

© 2001-2011 Comsenz Inc.

回顶部