以下是引用rongduo在2004-11-29 8:39:33的发言:
按照中学数学中的排列组合的理论与方法,易知8个角块在魔方上的全部可能的组合可以看成是8个角块的全排列,其数值为8!;同理12个边块的可能的组合数值为12!。8个角块方向的可能的组合数为38,12个边块方向的可能的组合数为212。这样魔方全部可能的图案组合数为:
8!×38 ×12!×212
这是所有组装正确和错误的魔方图案的总数。由表示定理知道,这样的图案可分为12族。各族的图案数都相等——这是因为,一个组装错误的魔方与组装正确的魔方有着完全相同的物理构造和转动方式。不妨想象已知的组装错误的魔方只是对一个组装正确的魔方进行重“染色”而成的,“染色”行为显然不会改变这个魔方中方块的组合数。故而,任意一个三阶魔方(无论其组装正确与错误)的图案的总数应为:
8!×38 ×12!×212/12
≈ 4.3 × 1019
rongduo 朋友是否考虑过变换不允许的组合?你的原理,是完全基于手工组装的计算,再排除错误图谱,非常简单又非常巧妙,这在低阶很容易,但在高阶可能不现实,还有一点,你没有考虑到中心块的影响.三阶有定义的很好的拆的概念,即角块不可能装到中块位等,三阶块装错方向的错误可转移给其它块,在高阶就不是这么回事了,犹其是无色向心块原地装错方向(现有结构不允许,理论上许可),那么这个心块移到任何地方都是错向的,装错的组合数可能大的惊人,其实组合数是可以通过变换规则的运用而非常简单地计算出来,以上意见仅供参考.不过我还是对你思路独到之处非常欣赏,认为是不失为验证其它计算方法的好主意.另外请注意纯色魔方问题,即花色可能不能完全反映魔方状态,计算时要区别是计算魔方状态,还是花色,如果是花色,又要区别六面单色还是其它着色方案,有些着色方案存在同构不同色的问题,对同构图,你定义为不同的图还是相同的图,这些问题的取舍会极大地影响你的计算结果.
计算原理有以下几种:
基于复原方法的计算,最简单最直观,到复原最后阶段,可选择的变换非常有限
基于组装排错的计算,这是你当前用的方法
基于变换规则的计算,N阶定律中已给出一般性各阶组合数计算公式
[此贴子已经被作者于2005-4-9 9:04:14编辑过]
|