- 最后登录
- 2013-7-6
- 在线时间
- 1031 小时
- 阅读权限
- 100
- 注册时间
- 2005-3-10
- 积分
- 3197
- 帖子
- 1034
- 精华
- 12
- UID
- 564
- 性别
- 男
- 积分
- 3197
- 帖子
- 1034
- 精华
- 12
- UID
- 564
- 性别
- 男
|
楼主真提出了一个难题啊,现有的理论都解决不了这个问题。。。。<BR>具体不会算,先估算一个结果吧,将魔方随意打乱到任意状态,然后将各个块在原地进行精细的调色,绝大多数情况下都能达到“六面无同色相邻”的情况。考虑到有的位置分布其“六面无同色相邻”的颜色取法不止一种,而个别位置分布不可能“六面无同色相邻”,故我估计,“六面无同色相邻”的状态数大致等于不考虑色向的魔方状态数。<BR>即:无同色相邻数目 ≈12! * 8! /2 ≈9.6万亿个状态,而随意转动魔方达到“六面无同色相邻”的概率约为1/(3^7 * 2^11) ≈450万分之一。<BR>当然这只是估计,仅供参考。。 <BR><BR>调色遵循以下规则: <BR>1. 所有块都不改变位置,在原地翻转。<BR>2. 棱块颜色受相邻中心块颜色制约,如棱块上的一个颜色与一相邻中心块同色,则该棱块方向确定,暂且称为“被约束的”;<BR>3. 未受制约的棱块两个方向均可,暂且称它为“自由的”;<BR>4. 角块方向受三个相邻棱块颜色制约,往往周围的一两个“被约束的”棱块,就决定了这个角块也是“被约束的”; <BR>5. 角块几个方向均可的情况,称之为“自由的”;<BR>这样,除了偶尔发现矛盾的情况,总能调成“六面同色不相邻”的样子。。
[ 本帖最后由 noski 于 2008-1-16 16:56 编辑 ] |
|