魔方吧·中文魔方俱乐部

 找回密码
 注册
搜索
热搜: 魔方
查看: 3192925|回复: 18
打印 上一主题 下一主题

【野子】UFO系列之Sando Ring [复制链接]

透魔

速度,难度,精度,大度,适度!

Rank: 6Rank: 6

积分
7948
帖子
4800
精华
9
UID
1240695

十年元老

跳转到指定楼层
1#
发表于 2011-4-5 13:15:23 |只看该作者 |倒序浏览
英文名:Sando Ring,谷歌翻译叫:桑多环,我管它叫:四球ufo
感谢鲁尼的帮忙,几经波折终于拿下。
英文资料:
There are several puzzles called Ufo, but this one is made by Netblock. It consists of a disc which is split into two layers which can rotate about the central axis. Spaced evenly along the rim of the disc are 3 spheres of different colours. These are split into octants, so that when the layers of the disc are turned, one half of each sphere (4 pieces) travels with each layer. The spheres can also rotate in two halves about an axis along the disc edge. Although this puzzle is hard to describe, it is fairly easy to solve.
An earlier version is called King Ring, or Sando Ring. This is much larger, uses bright colours, and has four spheres. It looks very much like a toddler's toy.
The Ufo was patented on 13 May 1997 by Wai K. Chan, US 5,628,512. The King Ring was patented on 21 March 1996 by Zoltan Pataki, Istvan Varadi, and Attila Kovacs, WO 96/08297.

The number of positions:Ufo: There are 24 pieces, 8 of each colour. They can therefore be arranged in at most 24!/8!3=9,465,511,770 ways. This limit is not reached because:
  • The pieces in the left halves and the right halves of the balls never intermingle.
  • The orientation of the puzzle itself is unimportant.
The first restriction means that there are at most 12!2 / 4!6 = 1,200,622,500 possible positions. The second restriction means that the real number of positions is about 1/6th of that number because the puzzle can be held in 6 different ways (due to the three-fold symmetry around the centre, and because it can be turned over). As some positions are themselves symmetric, the exact number can best be calculated with Burnside's Lemma, and this gives 200,121,075 positions.

King Ring / Sando Ring: There are 32 pieces, 8 of each colour. Using the same reasoning as above, we get 16!2 / 4!8 = 3,976,941,969,000,000 positions. The real number of positions is about 1/8 of this, and the exact number iven by the Burnside Lemma is 497,117,746,919,592.
1.JPG 2.JPG 3.JPG 4.JPG 5.JPG 6.JPG 1.JPG

[ 本帖最后由 野 子 于 2011-8-1 11:52 编辑 ]
已有 1 人评分经验 收起 理由
子坎 + 10 魔方美图

总评分: 经验 + 10   查看全部评分

qq:109480482

红魔

要低调……

Rank: 4

积分
1003
帖子
1209
精华
4
UID
18427
性别

收藏爱好者 魔方改造大师 魔方破解达人 八年元老

2#
发表于 2011-4-5 13:16:27 |只看该作者
杀了个发 欣赏大图
认真你就输了……

使用道具 举报

Rank: 1

积分
61
帖子
490
精华
0
UID
84578
性别
WCA ID
2009WANG27
兴趣爱好
收藏

六年元老

3#
发表于 2011-4-5 13:16:47 |只看该作者
我来抢沙发的。哈哈。
已有 1 人评分经验 收起 理由
耗子哥哥 -1 没抢到,丢人!

总评分: 经验 -1   查看全部评分

使用道具 举报

积分
8
帖子
8
精华
0
UID
1292666
性别
保密
4#
发表于 2011-4-5 13:17:10 |只看该作者
野子又入好东西了呀,呵呵!专业户!

使用道具 举报

透魔

阿V

Rank: 6Rank: 6

积分
7733
帖子
6460
精华
2
UID
1253084
WCA ID
2010ZHAN17

论坛建设奖 爱心大使 十年元老 十二年元老 十四年元老

5#
发表于 2011-4-5 13:23:14 |只看该作者
野子的相机很给力!!!
鱿型的打工仔

使用道具 举报

Rank: 4

积分
1144
帖子
742
精华
0
UID
1258464
性别
兴趣爱好
破解
收藏
结构
DIY

四年元老 十年元老

6#
发表于 2011-4-5 13:45:16 |只看该作者
东西很好,图也很好!

使用道具 举报

Rank: 2

积分
538
帖子
493
精华
0
UID
1237884
性别
7#
发表于 2011-4-5 14:12:34 |只看该作者
这个确实漂亮,貌似不难吧,野子

使用道具 举报

透魔

速度,难度,精度,大度,适度!

Rank: 6Rank: 6

积分
7948
帖子
4800
精华
9
UID
1240695

十年元老

8#
发表于 2011-4-5 14:16:17 |只看该作者
恩 不难 就是好看 个头大 呵呵
qq:109480482

使用道具 举报

红魔

橙黄

Rank: 4

积分
2512
帖子
2189
精华
6
UID
40265
性别
保密
兴趣爱好
收藏

收藏爱好者 八年元老

9#
发表于 2011-4-5 14:45:41 |只看该作者
跟我默念,这货是塑料,这货是塑料,这货是塑料......
人无嗜者 不足深交  其情无深也。

使用道具 举报

Rank: 3Rank: 3

积分
817
帖子
778
精华
0
UID
1280608
性别
保密
10#
发表于 2011-4-5 16:06:35 |只看该作者
漂亮!还是四球UFO叫得生动!
鄙视奸商!

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

Archiver|手机版|魔方吧·中文魔方俱乐部

GMT+8, 2024-12-28 11:20

Powered by Discuz! X2

© 2001-2011 Comsenz Inc.

回顶部