- 最后登录
- 2023-8-16
- 在线时间
- 3007 小时
- 阅读权限
- 100
- 注册时间
- 2007-12-3
- 积分
- 3923
- 帖子
- 2556
- 精华
- 6
- UID
- 15558
- 性别
- 保密
- WCA ID
- 2008CHEN27
- 兴趣爱好
- 理论
- 积分
- 3923
- 帖子
- 2556
- 精华
- 6
- UID
- 15558
- 性别
- 保密
- WCA ID
- 2008CHEN27
- 兴趣爱好
- 理论
|
我感觉,大烟头,乌木,忍大师对24同态应该已经比较认可。
对48同态的不认可也主要是因为对“镜像状态”的不认可。下面我争取一个帖子解释一下什么是镜像状态。
镜像状态我的定义:
对于状态A,任取达到状态A的一个公式G。
取G的镜像公式G' (比如如果G=FRUR’U‘F’,则G‘=F’L‘U’LUF)
则 G' 所对应的魔方状态 A’ 即为状态A的镜像状态。
注:这个定义只是为了方便大家理解,更准确的定义我会贴在本文最下面。
从上面定义可以看出:
1) 镜像状态不是魔方在镜子中的状态,而是针对镜像公式而言的。
2) 镜像状态是通过公式G'转动得到的,所以镜像状态都是合法状态,而不是不可能达到的状态。
问题一:镜像状态是否唯一?
答:由于上面定义中镜像状态是通过转动定义的,而对于一个状态A,存在无穷多个公式G,那么是不是每一个G‘都对应同一个A’呢,还是对于某个状态会产生无穷多个A‘?
这个问题在我的定义下确实证明起来比较麻烦,但结论是肯定的。即对于一个状态A,对于它的任意一个公式G,G’均对应同一个状态。
问题二:镜像状态能否与转动序列无关?
上面的定义中,镜像状态是定义在转动序列之上的,但是对于给定的一个状态,如果不知道它的转动序列,或者能否不通过求它的转动序列而直接得到它的镜像状态呢?
答:答案是肯定的。使用转动序列来定义镜像状态只是为了方便理解,实际上求一个状态的镜像状态确实是与转动序列无关的(甚至连装错的状态也可以定义镜像状态)。
附:CubeExplorer的帮助文档中对48同态的定义(其中,S_LR2就对应与镜像状态):
For each cube there are up to 48 equivalent cubes, because the cube has 48 symmetries including reflections. In Cube Explorer, these 48 symmetries are generated by four "basic" symmetries:
S_URF3, a 120 degree turn of the cube around an axis through the URF-corner and DBL-corner,
S_F2, a 180 degree turn of the cube around an axis through the F-center and B-center,
S_U4, a 90 degree turn of the cube around an axis through the U-center and the D-center
S_LR2, a reflection at the RL-slice plane.
These basic symmetries are permutations of the corners and permutations of the edges and are described in cubedefs.htm.
Any of the 48 symmetries is uniquely generated by the product
(S_URF3)x1 * (S_F2)x2 * (S_U4)x3 * (S_LR2)x4
with x1 from 0..2, x2 from 0..1, x3 from 0..3 and x4 from 0..1. This tuple (x1,x2,x3,x4) is mapped to a natural number from 0..47 by
16*x1 + 8*x2 + 2*x3 + x4
In this way each of the symmetries has an associated index from 0..47. With S(i) we denote the symmetry which belongs to the index i.
Two cubes with the permutations A and B are equivalent if and only if there is an i with
S(i)-1*A*S(i) = B
All cubes which are equivalent, belong to the same equivalence class.
In Cube Explorer the S(i) are implemented in the arrays CornSym and EdgeSym in the unit symmetries.pas |
|