魔方吧·中文魔方俱乐部

 找回密码
 注册
搜索
热搜: 魔方
楼主: 至尊达哥
打印 上一主题 下一主题

四维几何题 [复制链接]

Rank: 2

积分
359
帖子
353
精华
0
UID
1336238
性别
保密
居住地
福州市
兴趣爱好
速度

四年元老 六年元老 八年元老

21#
发表于 2016-4-29 22:05:20 |只看该作者
乌木 发表于 2016-4-29 21:01
见19楼。
……………………………………………………………………………………

这么说来这个胞体就是图中最外围的八个点形成的正方体(从三维的角度看)

使用道具 举报

Rank: 8Rank: 8

积分
18050
帖子
16478
精华
9
UID
449
性别

魔方理论探索者 论坛建设奖 爱心大使 十年元老

22#
发表于 2016-4-30 05:19:06 |只看该作者
双子流星 发表于 2016-4-29 22:05
这么说来这个胞体就是图中最外围的八个点形成的正方体(从三维的角度看)

是的。
八个胞体是一样的。
但仅从上面那个投影图,不易看出这一点,有人把旋转着的四维正方体的投影,做成动画,就体现了这一点:
四维空间立方体.gif

使用道具 举报

Rank: 8Rank: 8

积分
8370
帖子
3193
精华
81
UID
4618
性别

论坛建设奖 十年元老

23#
发表于 2016-4-30 20:35:34 |只看该作者
本帖最后由 hubo5563 于 2016-4-30 21:21 编辑
至尊达哥 发表于 2016-4-29 15:43
我想知道为什么是1/4Vh呢?


我们知道三维中的锥体,设从锥体顶点到任意一个平行底面的截面距离为x,锥体高度为h,底面为S,
截面和底面是相似的,底面上的任意一维度量,就存在截面上的一个一维度量与之对应,截面上的一维度量与底面一维度量之比就等于x/h,面积比是二维度量,面积比是(x/h)的平方。
底面上的任意二维形状,就存在截面上的一个二维形状与之对应,他们是相似的,截面上的二维形状的面积与底面上与之对应的二维形状之比就等于(x/h)的平方。
特别是截面和底面是相似的,他们面积比是
S(x)/S=(x/h)^2   其中S(x)是距离顶点为x的截面积。
S(x)=S/h^2*x^2=k*x^2;

四维中的锥体类似三维,设从锥体顶点到任意一个平行底体的截体距离为x,锥体高度为h,底体为V,这里说的底体和截体是四维锥体的底三维超平面,和截面的三维超平面。
截体和底体是相似的,底体上的任意一维度量,就存在截体上的一个一维度量与之对应,截体上的一维度量与底体一维度量之比就等于x/h,
底体上的任何二维形状,也存在截体上的一个二维形状与之对应,截体上的二维形状与底体上与之对应的二维形状也是相似的,面积之比就等于(x/h)^2,
底体上的任何三维形状,也存在截体上的一个三维形状与之对应,截体上的三维形状与底体上与之对应的三维形状也是相似的,体积之比就等于(x/h)^3,
因此,特别是截体和底体是相似的,体积比等于(x/h)^3,

V(x)/V=(x/h)^3;
V(x)=V/h^3*x^3=k*x^3
这里k=V/h^3是常数。
特别V(h)=V=k*h^3;

四维胞体体积就是V(x)dx的从0到h的定积分
而V(x)dx=kx^3的不定积分是1/4kx^4,所以
四维胞体体积就是1/4k*h^4-1/4*k*0^4=1/4*k*h^4=1/4*h*k*h^3=1/4h*V

四维空间的台胞体就是截锥胞体,体积就是
V(x)dx的从h1到h2的定积分,就是1/4kh2^4-1/4kh1^4=1/4k(h2-h1)(h2^3+h2^2*h1+h2*h1^2+h1^3)
h2-h1=h,是截锥的高
k*h2^3是下底的体积
k*h1^3是上底的体积
k*h2^2*h1是(下底体积平方乘以上底体积)的立方根
k*h2*h1^2是(下底体积乘以上底体积平方)的立方根
就得出四维空间的台胞体积:

1/4h(V1+V2+(V1平方*V2)的立方根+(V1*V2的平方)的立方根)

而三维空间的台体体积是
1/3h(S1+S2+(S1*S2)的平方根)


使用道具 举报

Rank: 8Rank: 8

积分
8370
帖子
3193
精华
81
UID
4618
性别

论坛建设奖 十年元老

24#
发表于 2016-4-30 21:31:54 |只看该作者
乌木 发表于 2016-4-26 08:51
这和四维正方体有类似之处,平面三角形——三维四面体——四维锥胞体;平面正方形——三维正方体——四 ...

是的,这个图是投影图,实际上每个点都有4个棱,这4个棱是两两相互垂直的。这在三维空间是不可能的,在四维空间确实是这样。

使用道具 举报

Rank: 5Rank: 5

积分
3319
帖子
1842
精华
8
UID
1330033
性别
兴趣爱好
破解
DIY
巧环
其它

魔方破解达人 两年元老 四年元老 八年元老

25#
发表于 2016-5-1 10:11:01 |只看该作者
hubo5563 发表于 2016-4-30 20:35
我们知道三维中的锥体,设从锥体顶点到任意一个平行底面的截面距离为x,锥体高度为h,底面为S,
截面和 ...

数学真奇妙,只是没学过定积分好像不是很理解......
请教个问题,一维度量是什么?

使用道具 举报

Rank: 5Rank: 5

积分
3319
帖子
1842
精华
8
UID
1330033
性别
兴趣爱好
破解
DIY
巧环
其它

魔方破解达人 两年元老 四年元老 八年元老

26#
发表于 2016-5-1 10:12:27 |只看该作者
乌木 发表于 2016-4-29 19:24
我的思路是,
一维中,只能给出一根长度为a的线段;
二维中,线段两端同向垂直“生长”两根长度为a的线 ...

看明白了,是这样的。

使用道具 举报

Rank: 8Rank: 8

积分
8370
帖子
3193
精华
81
UID
4618
性别

论坛建设奖 十年元老

27#
发表于 2016-5-1 11:41:37 |只看该作者
本帖最后由 hubo5563 于 2016-5-1 11:43 编辑
至尊达哥 发表于 2016-5-1 10:11
数学真奇妙,只是没学过定积分好像不是很理解......
请教个问题,一维度量是什么?


曲面包围的体积、曲线包围的面积等都可以用定积分求。
可量长度的,三角形的高、底边长度、周长等,三维物体的棱,等都是一维度量

使用道具 举报

Rank: 5Rank: 5

积分
3319
帖子
1842
精华
8
UID
1330033
性别
兴趣爱好
破解
DIY
巧环
其它

魔方破解达人 两年元老 四年元老 八年元老

28#
发表于 2016-5-1 19:07:05 |只看该作者
hubo5563 发表于 2016-4-30 20:35
我们知道三维中的锥体,设从锥体顶点到任意一个平行底面的截面距离为x,锥体高度为h,底面为S,
截面和 ...
S(x)/S=(x/h)^2   其中S(x)是距离顶点为x的截面积。
S(x)=S/h^2*x^2=k*x^2;

S(x)=S/h^2*x^2=k*x^2;这个好像有点问题,里面的"/"应该为"*",因为它是由S(x)/S=(x/h)^2通过移项得到的。
后面的V(x)=V/h^3*x^3也是的。
另外建议一下,把四维体积的表示符号改为A,免得和三维体积V混淆
给我一支杠杆,我能撬动整个地球!
给我一个魔方,我能转动整个宇宙!

使用道具 举报

Rank: 8Rank: 8

积分
8370
帖子
3193
精华
81
UID
4618
性别

论坛建设奖 十年元老

29#
发表于 2016-5-1 20:59:52 |只看该作者
至尊达哥 发表于 2016-5-1 19:07
S(x)=S/h^2*x^2=k*x^2;这个好像有点问题,里面的"/"应该为"*",因为它是由S(x)/S=(x/h)^2通过移项得到 ...

没错呀,S(x)/S=(x/h)^2 两边同乘以常数S,化简就是
S(x)=S/h^2*x^2

使用道具 举报

Rank: 5Rank: 5

积分
3319
帖子
1842
精华
8
UID
1330033
性别
兴趣爱好
破解
DIY
巧环
其它

魔方破解达人 两年元老 四年元老 八年元老

30#
发表于 2016-5-1 21:12:01 |只看该作者
hubo5563 发表于 2016-5-1 20:59
没错呀,S(x)/S=(x/h)^2 两边同乘以常数S,化简就是
S(x)=S/h^2*x^2

S(x)/S=(x/h)^2
S(x)/S*S=(x/h)^2 *S(左边式子中的S可以约分)
S(x)=(x/h)^2 *S
S(x)=S*h^2*x^2

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

Archiver|手机版|魔方吧·中文魔方俱乐部

GMT+8, 2024-11-30 19:36

Powered by Discuz! X2

© 2001-2011 Comsenz Inc.

回顶部