魔方吧·中文魔方俱乐部

 找回密码
 注册
搜索
热搜: 魔方
楼主: 井井
打印 上一主题 下一主题

请教魔方随机组装复原的问题 [复制链接]

Rank: 8Rank: 8

积分
18050
帖子
16478
精华
9
UID
449
性别

魔方理论探索者 论坛建设奖 爱心大使 十年元老

21#
发表于 2007-3-6 23:17:09 |只看该作者

噢,对不起,我又误解了。冬兄一定是说12×4.3252×10^19个状态中只有一个是处于六面复原态的,那比例值当然是极小极小的,没错!

我的脑筋老是不会急转弯。

不过,好像这个1/(12×4.3252×10^19)值不叫几率,对吗?我老是把“几率”理解为还未发生的事物有多少可能性会发生,是某种“预报”;而这里的1/(12×4.3252×10^19)最多算是“预报”了随机组装的话,正好装出六面复原的几率(这与楼主的问题不一样吧?当然,楼主的问题有二义性),不包括(4.3252×10^19-1)个可复原态中的任何一个。对吗?

[此贴子已经被作者于2007-3-6 23:36:36编辑过]

使用道具 举报

Rank: 8Rank: 8

积分
18050
帖子
16478
精华
9
UID
449
性别

魔方理论探索者 论坛建设奖 爱心大使 十年元老

22#
发表于 2007-3-7 10:56:21 |只看该作者
楼上我的话仍有一点点小问题。
再想想,随机组装三阶纯色魔方的角块和棱块时,要问出现某一指定状态(即在1/12的可复原态或已复原态和11/12的不可复原态之中指定某一态)的概率a为多大,不仅仅六面正好复原这一态为a=1/(12×4.3252×10^19),M=12×4.3252×10^19个态中的任一态个个都如此,绝对平等。也就是说,“指哪打哪”的概率一律都是这个极小极小的a。对不对?这类概率问题蛮搅人的。

使用道具 举报

Rank: 8Rank: 8

积分
18050
帖子
16478
精华
9
UID
449
性别

魔方理论探索者 论坛建设奖 爱心大使 十年元老

23#
发表于 2007-3-8 16:54:44 |只看该作者
如果楼主问的是三阶纯色魔方的棱、角块随机组装后能够复原的概率,那就大得多得多--1/12 。原因从以上的讨论中可以看出。也可以如下考虑:

以6个中心块构架为坐标基准,先看这样随机组装棱角块的状态总数 M:8个角块放入8个位置的可能放置法种数为 8!;12个棱块的可能放置法种数为  12!;每个角块有3种取向,这使状态总数要乘以3^8倍;每个棱块有两种取向,状态总数还要乘以2^12倍。所以
         M=8!×12!× 3^8 × 2^12(约为 5.2×10^20 )。

这5.2×10^20个状态中有N个属于正确魔方能够转出的状态(其中1个为“复原态”,N-1个为转出态,这里一起作为可转出态也罢),反过来,N 就是与楼主问题有关的、可复原态的总数。下面来看看N的值。

用转动魔方的办法布排棱、角块时,如果8个角块“先入为主”地转出“角位置布排种数”为 8! ,那么,由于受到魔方结构所致的魔方规律的限制,12个棱块只能转出“棱位置布排种数”为 12×11×10×9×8×7×6×5×4×3×1×1=12!/2 。其中第11个棱块面对两个空位不能任取了,只能视角块位置情况和头10个棱块位置情况,而仅有一种选择,故倒数第2个因子为“×1”。

如果12个棱“先入为主”,转出12!个“棱位置布排种数”,那么8个角只能转出“角位置布排种数”为8×7×6×5×4×3×1×1=8!/2 。其中第7个角块在两个空位中只能视棱位置的情况和头6个角块的位置情况,而仅有一种可能,故第倒2个因子为“×1”。

两种说法指一件事--用转动魔方的办法布排棱、角块时,就位置而言的状态数为(8!×12!)/2 。

下面再看棱块、角块颜色取向的影响。由于受到魔方结构所致的魔方规律的限制,前7个角块就地转向可能性都是3,第8个角的取向可能性要视前面7个角取向情况而仅有一种选择余地。所以,由角块颜色方向引起的状态变化数为(3^7)×1=(3^8)/3。

同样,最后一个棱块的取向选择只有1种,由棱块颜色方向引起的状态变化数为(2^11)×1=(2^12)/2。所以,N=((8!×12!)/2  )×((3^8)/3  )×(2^12)/2 =(8!×12!× 3^8 × 2^12)/(2×3×2)=M/12(约为4.3×10^19) 。

所以,N=M / 12 。

啰嗦结束。

[ 本帖最后由 乌木 于 2009-1-23 11:38 编辑 ]

使用道具 举报

Rank: 2

积分
320
帖子
40
精华
0
UID
11904
性别
24#
发表于 2007-9-2 12:34:52 |只看该作者
学习~~~~~~~~~~~

使用道具 举报

积分
540
帖子
48
精华
0
UID
8056
性别
25#
发表于 2008-2-4 13:54:40 |只看该作者
提示: 作者被禁止或删除 内容自动屏蔽

使用道具 举报

Rank: 8Rank: 8

积分
18050
帖子
16478
精华
9
UID
449
性别

魔方理论探索者 论坛建设奖 爱心大使 十年元老

26#
发表于 2008-2-4 15:47:18 |只看该作者

回复 25# 的帖子

保持角块、棱块框架的当时状态不变之下,让六个中心块保持相对位置关系不变的条件下,相对于角块、棱块框架变化,用你说的扣下中心块盖子重装的方法的话,可以有24种装法。但是,中心块组相对于角块、棱块框架有过偶数次90° 旋转的话,是可复原态;有过奇数次90°旋转的话,就得到不可复原态。
所以,可复原的概率为0.5。

[ 本帖最后由 乌木 于 2011-4-11 11:12 编辑 ]

使用道具 举报

积分
540
帖子
48
精华
0
UID
8056
性别
27#
发表于 2008-2-4 21:01:03 |只看该作者
提示: 作者被禁止或删除 内容自动屏蔽

使用道具 举报

Rank: 8Rank: 8

积分
18050
帖子
16478
精华
9
UID
449
性别

魔方理论探索者 论坛建设奖 爱心大使 十年元老

28#
发表于 2008-2-4 22:35:00 |只看该作者

回复 27# 的帖子

就是,魔方的内在规律很有趣,我是说不清楚。只能应用人家的结论,收集了一些魔方的不可能态--万一出现,只能说明魔方被错装过。请看:http://bbs.mf8-china.com/viewthread.php?tid=3744&extra=page%3D14

[ 本帖最后由 乌木 于 2011-4-11 11:14 编辑 ]

使用道具 举报

Rank: 2

积分
306
帖子
232
精华
0
UID
19478
性别
29#
发表于 2008-4-20 22:33:53 |只看该作者
俺用事实证明,复原的概率很大,昨天拆过2个,一个能复原,一个不能

使用道具 举报

Rank: 8Rank: 8

积分
18050
帖子
16478
精华
9
UID
449
性别

魔方理论探索者 论坛建设奖 爱心大使 十年元老

30#
发表于 2008-4-20 23:00:46 |只看该作者

回复 29# 的帖子

您取的样本数太少太少啦!求概率的实验必须统计大量的事件。计算方法表明,随机组装棱块和角块的话(六个中心块不变!),可复原的概率为1/12 。

[ 本帖最后由 乌木 于 2011-4-11 11:16 编辑 ]

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

Archiver|手机版|魔方吧·中文魔方俱乐部

GMT+8, 2024-11-24 09:43

Powered by Discuz! X2

© 2001-2011 Comsenz Inc.

回顶部