- ¼
- 2024-5-17
- ʱ
- 51 Сʱ
- ĶȨ
- 10
- עʱ
- 2009-1-3
- 92
- 72
- 1
- UID
- 68405
- Ա

- 92
- 72
- 1
- UID
- 68405
- Ա
|
26#
2009-3-5 13:08:49
|ֻ
ظ 25#
ԭҲ
쳲ͨʽƵ
[༭]
쳲У1123581321
F(n)Ϊеĵn(nN+)ô仰дʽ
F(1)=F(2)=1,F(n)=F(n-1)+F(n-2) (n3)
ȻһԵС
ͨʽƵһ
ԵеΪ
X^2=X+1
X1=(1+5)/2, X2=(1-5)/2.
F(n)=C1*X1^n + C2*X2^n
F(1)=F(2)=1
C1*X1 + C2*X2
C1*X1^2 + C2*X2^2
C1=1/5C2=-1/5
F(n)=(1/5)*{[(1+5)/2]^n - [(1-5)/2]^n}5ʾ5
ͨʽƵͨ
賣r,s
ʹF(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]
r+s=1, -rs=1
n3ʱ
F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]
F(n-1)-r*F(n-2)=s*[F(n-2)-r*F(n-3)]
F(n-2)-r*F(n-3)=s*[F(n-3)-r*F(n-4)]
F(3)-r*F(2)=s*[F(2)-r*F(1)]
n-2ʽˣã
F(n)-r*F(n-1)=[s^(n-2)]*[F(2)-r*F(1)]
s=1-rF(1)=F(2)=1
ʽɻã
F(n)=s^(n-1)+r*F(n-1)
ô
F(n)=s^(n-1)+r*F(n-1)
= s^(n-1) + r*s^(n-2) + r^2*F(n-2)
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) + r^3*F(n-3)
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) ++ r^(n-2)*s + r^(n-1)*F(1)
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) ++ r^(n-2)*s + r^(n-1)
һs^(n-1)Ϊr^(n-1)Ϊĩr/sΪĵȱеĸĺͣ
=[s^(n-1)-r^(n-1)*r/s]/(1-r/s)
=(s^n - r^n)/(s-r)
r+s=1, -rs=1һΪ s=(1+5)/2, r=(1-5)/2
F(n)=(1/5)*{[(1+5)/2]^n - [(1-5)/2]^n |
|