魔方吧·中文魔方俱乐部

 找回密码
 注册
搜索
热搜: 魔方
楼主: 123wyx
打印 上一主题 下一主题

[教程] 三阶魔方三轮换分类及其应用 [复制链接]

Rank: 7Rank: 7Rank: 7

积分
2632
帖子
1305
精华
8
UID
4456
性别

亚洲纪录(AsR) 国家(地区)纪录(NR) 十年元老

51#
发表于 2016-7-13 22:25:23 |只看该作者
本帖最后由 123wyx 于 2016-7-14 22:23 编辑

第2节  棱块三轮换的镜像关系

      实际上,上文已将棱块各类、各组的镜像关系分析出来了。我们列出棱块三轮换各类镜面对称关系表以及各组镜面对称关系表。

棱块各类镜面对称关系表.png



表  棱块三轮换各类镜面对称关系表



棱块各组镜面对称关系表.png



表  棱块三轮换各组镜面对称关系表



      我们得到,棱块三轮换分为9个并类,划分为27个并组。

使用道具 举报

Rank: 7Rank: 7Rank: 7

积分
2632
帖子
1305
精华
8
UID
4456
性别

亚洲纪录(AsR) 国家(地区)纪录(NR) 十年元老

52#
发表于 2016-7-13 22:26:25 |只看该作者
本帖最后由 123wyx 于 2016-7-14 22:48 编辑

第3节  全部棱块三轮换的分类与分组

      我们根据“12/3原理”,把上面的结论推广到全部棱块三轮换。
      固定缓冲的棱块三轮换有55套,所以全部棱块三轮换有220套。固定缓冲的棱块三轮换有220型(440条),全部棱块三轮换共有880型(1760条)。
      不论是固定缓冲还是不限定缓冲,棱块三轮换共有13类,43组。根据“12/3原理”,不限定缓冲情况下每组的型的数量是固定缓冲情况下的4倍。

      先给出棱块220套的分类。

      棱块第1类的24套是:123、124、134、159、150、190、234、260、26A、20A、37A、37B、3AB、489、48B、49B、567、568、578、590、678、60A、7AB、89B。

      棱块第2类的24套是:125、139、13A、148、158、10A、236、240、24B、256、2AB、347、367、39B、478、490、570、57B、59B、689、68A、690、70A、8AB。

      棱块第3类的24套是:126、130、13B、145、156、19B、237、249、24A、267、290、348、378、30A、458、4AB、579、57A、50A、680、68B、6AB、79B、890。

      棱块第4类的24套是:127、146、167、179、17B、10B、238、278、289、280、29A、345、358、350、35A、30B、456、46A、46B、49A、59A、60B、79A、80B。

      棱块第5类的24套是:128、147、178、170、17A、19A、235、258、28A、28B、20B、346、356、359、35B、39A、467、469、460、40B、50B、69A、70B、89A。

      棱块第6类的12套是:129、14B、160、230、27A、34A、38B、459、56A、580、67B、789。

      棱块第7类的8套是:120、149、23A、34B、560、589、67A、78B。

      棱块第8类的12套是:12A、140、189、23B、250、349、36A、47B、569、58B、670、78A。

      棱块第9类的24套是:12B、14A、169、16A、180、18B、239、259、25A、270、27B、340、360、36B、389、38A、450、45B、479、47A、56B、58A、679、780。

      棱块第10类的12套是:135、137、157、246、248、268、357、468、90A、90B、9AB、0AB。

      棱块第11类的24套是:136、138、15A、15B、168、1AB、245、247、257、269、26B、29B、368、379、370、390、457、480、48A、40A、5AB、69B、790、80A。

      棱块第12类的4套是:16B、279、380、45A。

      棱块第13类的4套是:18A、25B、369、470。

使用道具 举报

Rank: 7Rank: 7Rank: 7

积分
2632
帖子
1305
精华
8
UID
4456
性别

亚洲纪录(AsR) 国家(地区)纪录(NR) 十年元老

53#
发表于 2016-7-13 22:27:27 |只看该作者
本帖最后由 123wyx 于 2016-7-15 09:51 编辑


      现在以第1类(E01-E04)为例简单解释一下分组。

      固定缓冲棱块三轮换第1类由6套组成。根据“12/3原理”,不限缓冲的棱块三轮换第1类由24套组成。

      在不限定缓冲的条件下棱块第1类共96型(192条),既可以分为24套,又可以分为4组。
      棱块第1类的24套是:123、124、134、159、150、190、234、260、26A、20A、37A、37B、3AB、489、48B、49B、567、568、578、590、678、60A、7AB、89B。
      棱块第1类的4组是:E01-E04。它们的“代表型”分别是ACG、ADH、ADG、ACH。

      棱块第1组至第4组(E01-E04)中的每一组在棱块第1类的24套中的每一套里有且只有一型;而棱块第1类的24套中的每一套在棱块第1组至第4组(E01-E04)中的每一组里有且只有一型。

      下面我们列出棱块第1类第1组至第4组(E01-E04)的全部型以及每型涉及的套的名称、整体旋转(旋转后新坐标系下的124套就是原坐标系下的那一套)和第一个字母编码位于向上或向下的面(如该棱块无向上或向下的面,则使用向前或向后的面)的1-2种写法。我们在组名的旁边标出该组在124套的那一型作为“代表”。

棱块第1组(E01)  本组代表型:ACG

E0101  123  y’  ACE
E0102  124  -  ACG
E0103  134  y  AEG
E0104  159  xy  ARI=IAR
E0105  150  xy’  AIT=ITA
E0106  190  x’z2  ART
E0107  234  y2  CEG
E0108  260  z  CSK
E0109  26A  y2z’  CKW
E0110  20A  x’z  CSW
E0111  37A  y’z  EXM
E0112  37B  yz’  EMZ
E0113  3AB  x’  EXZ
E0114  489  z’  GOQ
E0115  48B  y2z  GYO
E0116  49B  x’z’  GYQ
E0117  567  y’z2  IMK
E0118  568  z2  IOK
E0119  578  yz2  IOM
E0120  590  x  ITR
E0121  678  x2  KOM
E0122  60A  xz  KWS
E0123  7AB  y2x  MZX
E0124  89B  xz’  OQY

棱块第2组(E02)  本组代表型:ADH

E0201  123  y’  ADE
E0202  124  -  ADH
E0203  134  y  AEH
E0204  159  xy  AQI=IAQ
E0205  150  xy’  AIS=ISA
E0206  190  x’z2  AQS
E0207  234  y2  CFG
E0208  260  z  CTK
E0209  26A  y2z’  CKX
E0210  20A  x’z  CTX
E0211  37A  y’z  EWM
E0212  37B  yz’  EMY
E0213  3AB  x’  EWY
E0214  489  z’  GOR
E0215  48B  y2z  GZO
E0216  49B  x’z’  GZR
E0217  567  y’z2  IML
E0218  568  z2  IPL
E0219  578  yz2  IPM
E0220  590  x  ISQ
E0221  678  x2  KON
E0222  60A  xz  KXT
E0223  7AB  y2x  MYW
E0224  89B  xz’  ORZ

棱块第3组(E03)  本组代表型:ADG

E0301  123  y’  ACF
E0302  124  -  ADG
E0303  134  y  AFH
E0304  159  xy  ARJ=IBQ
E0305  150  xy’  AJS=ITB
E0306  190  x’z2  AQT
E0307  234  y2  CEH
E0308  260  z  CSL
E0309  26A  y2z’  CLX
E0310  20A  x’z  CTW
E0311  37A  y’z  EXN
E0312  37B  yz’  ENY
E0313  3AB  x’  EWZ
E0314  489  z’  GPR
E0315  48B  y2z  GYP
E0316  49B  x’z’  GZQ
E0317  567  y’z2  INL
E0318  568  z2  IPK
E0319  578  yz2  ION
E0320  590  x  ISR
E0321  678  x2  KPN
E0322  60A  xz  KXS
E0323  7AB  y2x  MYX
E0324  89B  xz’  ORY

棱块第4组(E04)  本组代表型:ACH

E0401  123  y’  ADF
E0402  124  -  ACH
E0403  134  y  AFG
E0404  159  xy  AQJ=IBR
E0405  150  xy’  AJT=ISB
E0406  190  x’z2  ARS
E0407  234  y2  CFH
E0408  260  z  CTL
E0409  26A  y2z’  CLW
E0410  20A  x’z  CSX
E0411  37A  y’z  EWN
E0412  37B  yz’  ENZ
E0413  3AB  x’  EXY
E0414  489  z’  GPQ
E0415  48B  y2z  GZP
E0416  49B  x’z’  GYR
E0417  567  y’z2  INK
E0418  568  z2  IOL
E0419  578  yz2  IPN
E0420  590  x  ITQ
E0421  678  x2  KPM
E0422  60A  xz  KWT
E0423  7AB  y2x  MZW
E0424  89B  xz’  OQZ

使用道具 举报

Rank: 7Rank: 7Rank: 7

积分
2632
帖子
1305
精华
8
UID
4456
性别

亚洲纪录(AsR) 国家(地区)纪录(NR) 十年元老

54#
发表于 2016-7-13 22:28:32 |只看该作者
本帖最后由 123wyx 于 2016-7-15 09:54 编辑

      再把E01-E04的所有型按所在的套列一个表供参考。(旋转的含义同按组分类的表。)

棱块第1类24套

E0101  123  y’  ACE
E0201  123  y’  ADE
E0301  123  y’  ACF
E0401  123  y’  ADF

E0102  124  -  ACG
E0202  124  -  ADH
E0302  124  -  ADG
E0402  124  -  ACH

E0103  134  y  AEG
E0203  134  y  AEH
E0303  134  y  AFH
E0403  134  y  AFG

E0104  159  xy  ARI=IAR
E0204  159  xy  AQI=IAQ
E0304  159  xy  ARJ=IBQ
E0404  159  xy  AQJ=IBR

E0105  150  xy’  AIT=ITA
E0205  150  xy’  AIS=ISA
E0305  150  xy’  AJS=ITB
E0405  150  xy’  AJT=ISB

E0106  190  x’z2  ART
E0206  190  x’z2  AQS
E0306  190  x’z2  AQT
E0406  190  x’z2  ARS

E0107  234  y2  CEG
E0207  234  y2  CFG
E0307  234  y2  CEH
E0407  234  y2  CFH

E0108  260  z  CSK
E0208  260  z  CTK
E0308  260  z  CSL
E0408  260  z  CTL

E0109  26A  y2z’  CKW
E0209  26A  y2z’  CKX
E0309  26A  y2z’  CLX
E0409  26A  y2z’  CLW

E0110  20A  x’z  CSW
E0210  20A  x’z  CTX
E0310  20A  x’z  CTW
E0410  20A  x’z  CSX

E0111  37A  y’z  EXM
E0211  37A  y’z  EWM
E0311  37A  y’z  EXN
E0411  37A  y’z  EWN

E0112  37B  yz’  EMZ
E0212  37B  yz’  EMY
E0312  37B  yz’  ENY
E0412  37B  yz’  ENZ

E0113  3AB  x’  EXZ
E0213  3AB  x’  EWY
E0313  3AB  x’  EWZ
E0413  3AB  x’  EXY

E0114  489  z’  GOQ
E0214  489  z’  GOR
E0314  489  z’  GPR
E0414  489  z’  GPQ

E0115  48B  y2z  GYO
E0215  48B  y2z  GZO
E0315  48B  y2z  GYP
E0415  48B  y2z  GZP

E0116  49B  x’z’  GYQ
E0216  49B  x’z’  GZR
E0316  49B  x’z’  GZQ
E0416  49B  x’z’  GYR

E0117  567  y’z2  IMK
E0217  567  y’z2  IML
E0317  567  y’z2  INL
E0417  567  y’z2  INK

E0118  568  z2  IOK
E0218  568  z2  IPL
E0318  568  z2  IPK
E0418  568  z2  IOL

E0119  578  yz2  IOM
E0219  578  yz2  IPM
E0319  578  yz2  ION
E0419  578  yz2  IPN

E0120  590  x  ITR
E0220  590  x  ISQ
E0320  590  x  ISR
E0420  590  x  ITQ

E0121  678  x2  KOM
E0221  678  x2  KON
E0321  678  x2  KPN
E0421  678  x2  KPM

E0122  60A  xz  KWS
E0222  60A  xz  KXT
E0322  60A  xz  KXS
E0422  60A  xz  KWT

E0123  7AB  y2x  MZX
E0223  7AB  y2x  MYW
E0323  7AB  y2x  MYX
E0423  7AB  y2x  MZW

E0124  89B  xz’  OQY
E0224  89B  xz’  ORZ
E0324  89B  xz’  ORY
E0424  89B  xz’  OQZ

使用道具 举报

Rank: 7Rank: 7Rank: 7

积分
2632
帖子
1305
精华
8
UID
4456
性别

亚洲纪录(AsR) 国家(地区)纪录(NR) 十年元老

55#
发表于 2016-7-13 22:29:37 |只看该作者
本帖最后由 123wyx 于 2016-7-15 09:58 编辑

      下面作出E01全部24型(E0101-E0124)的图供参考。

E0101 ACE.png E0102 ACG.png E0103 AEG.png
E0104 ARI.png E0105 AIT.png E0106 ART.png
E0107 CEG.png E0108 CSK.png E0109 CKW.png
E0110 CSW.png E0111 EXM.png E0112 EMZ.png
E0113 EXZ.png E0114 GOQ.png E0115 GYO.png
E0116 GYQ.png E0117 IMK.png E0118 IOK.png
E0119 IOM.png E0120 ITR.png E0121 KOM.png
E0122 KWS.png E0123 MZX.png E0124 OQY.png

图  E01全部24型

使用道具 举报

Rank: 7Rank: 7Rank: 7

积分
2632
帖子
1305
精华
8
UID
4456
性别

亚洲纪录(AsR) 国家(地区)纪录(NR) 十年元老

56#
发表于 2016-7-13 22:30:40 |只看该作者
本帖最后由 123wyx 于 2016-7-17 19:19 编辑

      按照上面的方法,可整理出棱块三轮换其他各组各型,并按字典序给出每型的编号(留给感兴趣的魔友作为练习,注意每组得到的三轮换数量要符合“12/3原理”)。这样,棱块三轮换880型(1760条)的分组就完全确定了。
      每组包含的型的数量如下表。

棱块三轮换各组所含型数.png



表  棱块三轮换每组包含的型的个数



      统计一下棱块三轮换在各种等价关系下等价类的个数。

棱块三轮换在各种等价关系下等价类的个数.png



表  棱块三轮换在各种等价关系下等价类的个数



       可以看到,固定缓冲与不固定缓冲这两种情况相比,对“类”、“组”、“并类”、“并组”这几个不区分三轮换的整体旋转的概念来说,两种情况下的等价类的个数是相同的;而“套”、“型”、“条”这几个严格区分位置的概念的等价类的个数符合“12/3原理”,即全部棱块三轮换的“套”、“型”、“条”数分别为固定缓冲棱块三轮换的“套”、“型”、“条”数的4倍。

使用道具 举报

Rank: 7Rank: 7Rank: 7

积分
2632
帖子
1305
精华
8
UID
4456
性别

亚洲纪录(AsR) 国家(地区)纪录(NR) 十年元老

57#
发表于 2016-7-13 22:31:46 |只看该作者
本帖最后由 123wyx 于 2016-7-15 10:05 编辑

第4节  三轮换分类总结

      我们把固定缓冲条件下,角块和棱块三轮换的类、套、组、型、条的个数列一张表。

固定缓冲三轮换在各种等价关系下等价类的个数.png



表  固定缓冲三轮换在各种等价关系下等价类的个数



      再把全部角块和棱块三轮换的类、套、组、型、条的个数列一张表。

全部三轮换在各种等价关系下等价类的个数.png



表  全部三轮换在各种等价关系下等价类的个数



      到这里,三阶魔方全部三轮换在上述各种等价关系下的等价类都已经完整地给出来了。

使用道具 举报

Rank: 7Rank: 7Rank: 7

积分
2632
帖子
1305
精华
8
UID
4456
性别

亚洲纪录(AsR) 国家(地区)纪录(NR) 十年元老

58#
发表于 2016-7-13 22:32:51 |只看该作者
本帖最后由 123wyx 于 2016-7-17 16:35 编辑


第三章  三轮换的组间一步关系



      我们以前很重视套与套之间的只差一步的关系。现在有了组的概念,我们注意到,在三轮换当中,有些组的公式又快又顺,有些组却没有一条令人满意的公式,这时就要用到三轮换组与组之间的一步关系。如果某组三轮换能通过魔方的一步转动变成另一组三轮换(或者它自己),则称这两组三轮换有“一步关系”。
      通过对“一步关系”的整理,我们可以了解到哪些组之间有一步关系,通过什么转动可以把给定的某组三轮换变成另一组三轮换。这样可以把好的公式充分利用起来,把公式不好的组通过一步装载转化为好的情况,用共轭法(其构造的公式的基本形式是a b a’,其中a为装载的过程,a’为a的逆,即卸载的过程)构造公式。

      我们以角块第1组(C01)为例。

0 C0105 OAJ.png



图  C0105 (OAJ)



      这是我们熟悉的角块第1组第5型(C0105),即OAJ。它通过转动U变为ODA三轮换,ODA(C1104)是C11的元素。所以C01与C11有一步关系。

1 C1104 ODA.png 2 C1211 OGD.png 3 C0218 OGJ( OJG).png

图  C0105通过U层转动变为C1104、C1211、C0218



      类似地,C0105通过转动U2、U’分别变为C1211 OGD、C0218 OJG(OGJ),所以C01分别与C12、C02有一步关系。

4 C0724 OZK( OKZ).png 5 C1022 OWX( OXW).png 6 C1808 OCM(OMC).png
7 C2201 OAH.png 8 C0108 ORA( OAR).png 9 C2209 OYA( OAY).png

图  C0105通过F或R层转动变为其他型



      C0105通过转动F、F2、F’、R、R2、R’分别变为C0724、C1022、C1808、C2201、C0108、C2209,所以C01分别与C07、C10、C18、C22、C01、C22有一步关系。(注意,C01中的型可以通过一步转动变成C01的型,所以C01和自身有一步关系。C01可以通过两种本质上不同的一步转动分别变成C22,所以C01与C22不但有一步关系,而且有两种一步关系。)
      C0105还可以通过D或B或L中的某一面形成一步转动,但转动D、B、L面在本质上分别与通过U、F、R中的面形成的一步转动相同。所以我们在考察角块一步转动时,只需要看3个面,即9种转动就可以了。(棱块则有些不同,后面会看到。)

      综上,C01分别与C11、C12、C02、C07、C10、C18、C22、C01、C22有一步关系。

使用道具 举报

Rank: 7Rank: 7Rank: 7

积分
2632
帖子
1305
精华
8
UID
4456
性别

亚洲纪录(AsR) 国家(地区)纪录(NR) 十年元老

59#
发表于 2016-7-13 22:33:53 |只看该作者
本帖最后由 123wyx 于 2016-7-17 16:49 编辑

      我们看一下角块各组(C01-C23)的一步转动。

角块三轮换组间一步关系分析表.png



表  角块各组的一步转动



      上表中DBL始终不动,是为了便于对照DBL缓冲角块三轮换表查找转动后三轮换所在组,但实际上三轮换组间一步关系与缓冲块没有任何关系。
      我们作一张图来看一下角块三轮换组间一步关系。

角块三轮换组间一步关系图.png



图  角块三轮换组间一步关系



      上图中的23个顶点分别表示角块三轮换的23个组(C01-C23)。两组之间有多少种本质不同的一步关系,就作多少条边将对应的两个顶点相连。这样就得到了这张23个顶点、86条边的“角块三轮换组间一步关系”图。
      这样,角块三轮换的组间一步关系就分析好了。

使用道具 举报

Rank: 7Rank: 7Rank: 7

积分
2632
帖子
1305
精华
8
UID
4456
性别

亚洲纪录(AsR) 国家(地区)纪录(NR) 十年元老

60#
发表于 2016-7-13 22:34:54 |只看该作者
本帖最后由 123wyx 于 2016-7-15 10:29 编辑

      我们再来看棱块。仿照角块的做法,无需多说,直接给出棱块三轮换组间一步关系分析表及棱块三轮换组间一步关系图。

棱块三轮换组间一步关系分析表.png



表  棱块三轮换组间一步关系分析表



棱块三轮换组间一步关系图.png



图  棱块三轮换组间一步关系(43个顶点、204条边)

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

Archiver|手机版|魔方吧·中文魔方俱乐部

GMT+8, 2024-11-22 04:36

Powered by Discuz! X2

© 2001-2011 Comsenz Inc.

回顶部