- 最后登录
- 2015-10-5
- 在线时间
- 764 小时
- 阅读权限
- 100
- 注册时间
- 2005-1-7
- 积分
- 4825
- 帖子
- 2795
- 精华
- 7
- UID
- 383
- 性别
- 男
- 积分
- 4825
- 帖子
- 2795
- 精华
- 7
- UID
- 383
- 性别
- 男
|
帮8楼整理出一个n个块不在原位的所有可能排列之关键计算公式,不用穷举,太费事了
-----------------------------------------------------------------------------------------------------------
F=n!* (1+∑((-1)^a*1/a!)), 其中(a=1到a=n,n是大于或等于2的正整数,n对应不在原位的块数)
-----------------------------------------------------------------------------------------------------------
用公式F可以轻易计算出n个块匀不在原位的所有可能排列数,跟你的计算值完全一致
n=2:2!*(1-1+1/2!)=1
n=3:3!*(1-1+1/2!-1/3!)=2
n=4:4!*(1-1+1/2!-1/3!+1/4!)=9
[ 本帖最后由 pengw 于 2009-8-30 22:36 编辑 ] |
|