- 最后登录
- 2018-9-6
- 在线时间
- 256 小时
- 阅读权限
- 20
- 注册时间
- 2010-4-1
- 积分
- 536
- 帖子
- 387
- 精华
- 0
- UID
- 1255103
- 性别
- 男
- 积分
- 536
- 帖子
- 387
- 精华
- 0
- UID
- 1255103
- 性别
- 男
|
这是原帖链接http://www.speedsolving.com/forum/showthread.php?t=21210
KCLL
KCLL is an extension to the Roux method. It involves solving the corners and solving the edge orientation or changing it from a hard case to an easy case in a single algorithm.
KCLL是桥式的一种扩展。它涉及到,在还原角块的同时还原楞块色相或者把还原色相里困难的情形变简单。
The exact method is deliberately vaguely defined, since the actual techniques I'm using have changed while I developed it and I'm sure I'm not quite done yet. Also, it can be approached by learning 300+ algorithms, or next to none.
准确方法还没有定义,因为我实际用到的技巧会伴随着发展有所改变,并且,我确信我还没有完成。而且,它既有可能接近300个公式,也有可能一个都不用。
So far, I've had two main approaches to tackling this technique. The first was algorithmatically, and I learnt the entire 'A' set.
目前为止,我有两种途径去处理这种技巧。第一种是公式法,我学会了全部的'A'情况。
Here are the algs I know/use for the sake of completeness;
这是我用的/知道的公式。
| Code:
| A2;none; R2F2RUL'U2RU'LULUR; R2B'R'BR'F'U'FRUR'UFUB; F'L'U2RU'LUR'FURU2R'UBUR; ULF'LF2R'FRF2L2URUF; UR'FR'F2LF'L'F2R2 / rUR'U'r'FR2U'R'U'RUR'F'UFUL; L2F2R'F'RF2L'FL'ULUB; U2R2F2LFL'F2RF'R4flip U'M'UL2B2LUR'U2LU'r6flip R'URU2L'BL2R'FU'RUL'A6;none; FRU'R'U'RUR'F'RUR'U'R'FRF'ULUR; R'UL'U2RU'x'UL'U2RU'UBUR; r'UL'U2RU'BL'B2RB'L4flip BR'U2B2R'BR2B'RB2U2RB' / R'U2FL2RUR'U'L2F2U2FR6flip M'UM'rBU2B'UR'FR'F'R2Ur' |
Recently (like, this weekend) I was messing about with KCLL. When talking about it with Gilles, I recall him saying that a single M' before CMLL can change the worse LSE case into one of the best. Remembering this, I started to try and approach KCLL intuitively. I've written down what I found for the first Sune case. I actually do this in solves.
最近(例如,这个周末)我正在弄KCLL。在和Gilles(桥式发明者)谈论的时候,我告诉他在CMLL之前一个简单的M'就能把最坏的6e4c变成最好的之一。介于此,我开始根据直觉尝试KCLL。我写下我对第一个Sune case的发现。我在还原中这样做了。
| Quote:
| Every KCLL alg is derived from the 'main' case in this example. You can also derive COLL from CMLL cases with the same techniques quite easily.
引用:在这个例子中,每一个KCLL公式从标准公式中变化得来。运用相同的技巧,你也能轻松地从CMLL中变化出COLL的公式。
Sune; RUR'URU2R'
lol COLL.
URUF; rUR'URU2r'(R变成了r,URUF楞块翻面)
Simply conjugating an algorithm by M' can influence EO.
简单添加一个M'就能影响楞块色相(edge orient)。
ULUR; UM2U' rUR'URU2 R'M'(与第一个公式对比一下会发现相似之处)
Forcing one of the easy 4flip cases with the above trick and cancelling the M2 at the start of the EO case with the end of the alg produces the easy 3 move EO case.
强行对easy 4flip case使用上面的技巧。用上面最后的公式可以省去了EO开始时的M2,产生3步EO的情况。
UFUB; M RUR'URU2R' M'
Same as before, shorter setup. (cancels from M2 rUR'... to M conj)
和前面一样,减少setup(好像类似盲拧里的setup)。(把M2 rUR'换成M)
UBUR; UM2U' rUR'URU2r'
Solving straight to the 3 move EO case.
直接做成3步EO的情况。
UFUL; M RUR'URU2R' M'
This is the same alg as the UF/UB flip case, but achieves 3 move EO differently.
这是对应于UFUB翻面的同一个公式,但是做成3步EO的途径与一样。
ULUB; M RUR'URU2R' UM'
This time you can cancel the above case into the EO to have it fully solved.
这次你能去掉上面的情况到EO使之完全解决。(没懂这句话的意思)
UBURUFUL; M' rUR'URU2R' M2
Conjugate by M2 to flip UR/DB for 3 move EO.
添加M2到to flip UR/DB 做成3步EO。
6flip; rUR'URU2R' M'
Cancel a FatSune into M2 4flip EO.
---
Of course, this is just the beginning. I introduced the main concepts, but there's much more to discover. For example, on E6/fruruf - try doing f instead of F and watch the magic unfold. Some cases aren't as flexible as this and may require alg generation, but you can at least apply this technique to every Sune/Niklas/fruruf - based case.
很明显,这只是一个开始。我引入了主要的想法,但还有很多东西有待发现。例如,在E6/fruruf-试试用f代替F看看有什么神奇的变化。有些情况不能如此灵活,一般来讲需要新的公式,但是至少你可以运用这个技术到每一个 Sune/Niklas/fruruf -基本情况。
04:04:21 <Kirjava> it's all about 这就是全部
04:04:27 <Kirjava> doing double slices instead of single 转双层来代替单层
04:04:39 <Kirjava> and changing M orientation 并且改变M的朝向
|
|
(Since I wrote the intuitive guide I decided to split CMLL and KCLL discussion, which is why this thread now exists)
(因为我决定分开CMLL和KCLL得讨论,这就是这个帖子存在的原因)
[ 本帖最后由 g7oa 于 2010-7-10 13:55 编辑 ] |
-
总评分: 经验 + 20
查看全部评分
|