以下是引用V_figo在2005-11-9 17:11:05的发言:
下面我们考虑群M/N(C)的结构.它就是将魔方除了顶点块不变外,将所有的其它块的颜色全部刷成同一种新的颜色后所对应的简化魔方的变换群(其实就是2阶魔方).而变换(见图2) (前)(前)(前)(下)(前)(下)(下)(下)(右)(右)(右)(下)(下)(右)(右)(右)(下) 将处在前层和下层两层共同的边上的两个顶点块互换位置,将其它顶点块不动.这说明M/N(C)可以将任意两个块互换同时保持其它块不动,而这样的变换生成了整个置换群,也就是说M/N(C)与S(8)同构.所以,|M/N(C)|=8!=40320.
好象和楼上的图不一致……
只有二阶与四阶存在唯二个边角块互换位置的情况,同时保持其它块不变.如果上文指的是其它阶就大错特错了,正如乌木所言.忍冬的N阶阶定律对块如何变换有详细描述,如果你的说法成立,则忍冬的N阶定律因此反证而被推翻,这无疑是一件令人印象深刻的事件,试目以待.另外,忍冬关于扰动关系的描述,在你的表达中如何做对应描述或群论如何表达扰动关系?除二阶外,其它阶是多个簇同时变换,如何用你的变换群表达?
[此贴子已经被作者于2005-11-10 13:50:06编辑过]
|