具有四个大三角面的百慕大三角魔方,从同构异型分类只能是一类,我们用21号做模型,来分析一下它的中心子群有多少个
元素。
四个大三角的百慕大魔方有12个角块,8个棱块。角块在角块位置上随意转动,最小是三轮换,可以找到三角块的轮换公式:
三角轮换:
因此,角块族有12!÷2种排列。
由于同时可以翻两角,公式如下:
两角翻:
所以,角块色向变化数为3^12/3=3^11。
由于具有四个大三角面的百慕大三角魔方正方形中心面是无法转动的,也就是橙面和绿面无法转动,所以,橙绿面的公共棱
块是固定不动的。其它棱块随意可调,最小变化为棱块三循环:
棱块三轮换公式:
所以,棱块的排列数为7!/2
由于棱块任意两个都能翻色,不能单独翻一个棱块。
翻两棱
所以,棱块色向有2^6种。
由于正方形中心面不能转动,三角中心面在中心子群是相同的,所以,不会产生棱块和角块之间的族间扰动。
因此,具有四个大三角的百慕大三角魔方中心子群状态数是
(12!/2)×3^11×(7!/2)×2^6=6842602080534528000。
也就是说,保持魔方中心方向不变的总状态数是6842602080534528000。
具有四个大三角面的百慕大三角魔方,从同构异型分类只能是一类,我们用21号做模型,来分析一下它有多少种可转出的三
角朝向。
我们用四元组{a,b,c,d}表示具有四个大三角面的三角面朝向状态,分别表示{红,白,黄,蓝}四个面在初始状态逆时针转动多
少个45度角。
例如,初始态为{0,0,0,0},蓝色转动逆时针135度表示为{0,0,0,3}。
首先分析一下蓝色面可以自由转动时,有多少种状态。
要想蓝色面可以自由转动,必须和它相邻的三个大三角面不能卡,从理论上讲,每个面只有转动到三角形边和蓝面平行时才能
不会卡的。每面只有三种情况。最多就是3×3×3=27种。然而,这三个面实际是相邻的,相互也有卡的现象。如果黄面可转出三态
,那么红色大三角必须有一边平行黄面,一边平行蓝面,这只有1种状态,即红色三角两个直角边和蓝黄面平行。此时,白色大三
角形也被蓝面和红面唯一确定。因此有三种状态。如果红面可转3态的话,黄面和白面的三角形也必须同时有平行红面和蓝面,这
时也只有一种情况,也三种状态。同理,如果白色面可以转三态,红面黄面也只能有一种状态,又有3种状态。而这九种状态中,
红面转三态和黄面转三态有一种共有,红面转三态和白面转三态有一种共有,多算了2种,因此共7种状态。这7种状态蓝色面是可
以自由转动的,蓝面可转8种状态,因此总转动是56种。
第一组,蓝色可自由转动的有如下状态共7组,每组8个,56种状态:
{0,0,0,X}-8
{0,0,2,X}-8
{0,0,5,X}-8
{2,0,2,X}-8
{2,2,2,X}-8
{2,5,2,X}-8
{5,0,2,X}-8
再分析一下黄色面可自由转动时有多少种状态。
想要黄色面自由转动,红蓝两面的大三角不能卡,因此,红,蓝面必须有平行黄面的边,由于白色面在黄色面的对面,红蓝面
的大三角边都不会平行白面,只有白色面的大三角的边有平行红色面和蓝色面,这样只有一种状态。红面可转出三态时,蓝面必
须有同时平行红面和黄面的三角形边,这样蓝面只能一种状态,同理,蓝面可转出三态时,红面必须有同时平行蓝面和黄面的三
角形边,这样红面只能一种状态。这样有六种状态,但有一种公共状态,因此实际有5种状态。这5种状态黄色面是可以自由转动的
,黄面可转8种状态,因此总转动是40种。
第二组,黄色可自由转动的有如下状态,共5组,每组8个,共40种状态:
{0,0,X,0}-8
{0,0,X,2}-8
{0,0,X,5}-8
{3,0,X,0}-8
{6,0,X,0}-8
同黄色面一样,可以分析白色面任意转动的状态是40种。
第三组,白色可任意转动的有如下状态,共5组,每组8个,共40种状态:
{2,X,2,1}-8
{2,X,2,4}-8
{2,X,2,6}-8
{4,X,2,6}-8
{7,X,2,6}-8
同蓝色面一样,可以分析红色面任意转动的状态是40种。
第四组,红色可任意转动的状态,共7组,每组8个,56种状态:
{X,0,2,0}-8
{X,0,4,0}-8
{X,0,7,0}-8
{X,3,2,6}-8
{X,6,2,6}-8
{X,0,2,3}-8
{X,0,2,6}-8
这4组转动状态有重复,重复如下:
第二组和第一组重复的有:
{0,0,0,0},{0,0,0,2},{0,0,0,5}
{0,0,2,0},{0,0,2,2},{0,0,2,5}
{0,0,5,0},{0,0,5,2},{0,0,5,5}
共9种状态
第三组和第一组重复的有:
{2,0,2,1},{2,0,2,4},{2,0,2,6}
{2,2,2,1},{2,2,2,4},{2,2,2,6}
{2,5,2,1},{2,5,2,4},{2,5,2,6}
共9种状态
第三组和第二组重复的没有
第四组和第一组重复的状态有
{0,0,2,0},{2,0,2,0},{5,0,2,0}
{0,0,2,3},{2,0,2,3},{5,0,2,3}
{0,0,2,6},{2,0,2,6},{5,0,2,6}
共9种状态
第四组和第二组重复的状态有
{0,0,2,0},{3,0,2,0},{6,0,2,0}
{0,0,4,0},{3,0,4,0},{6,0,4,0}
{0,0,7,0},{3,0,7,0},{6,0,7,0}
共9种状态
第四组和第三组重复的状态有
{2,0,2,6},{4,0,2,6},{7,0,2,6},
{2,3,2,6},{4,3,2,6},{7,3,2,6},
{2,6,2,6},{4,6,2,6},{7,6,2,6},
共9种状态
第一组、第二组、第三组重合的没有
第一组、第二组、第四组重合的如下:
{0,0,2,0}
共1个
第二组、第三组、第四组重合的没有
第一组、第三组、第四组重合的如下:
{2,0,2,6}
共1个
四个组都包括的状态没有。
因此,根据加法原理,总状态数为:
56+56+40+40-9-9-9-9-9+1+1=149
四个大三角的百慕大三角魔方的中心群有6842602080534528000种状态,所以魔方总状态数为:
149×6842602080534528000=1019547709999644672000
它是三阶魔方总状态数43252003274489856000的23.572265625倍。
[ 本帖最后由 hubo5563 于 2011-6-24 17:08 编辑 ] |