- 最后登录
- 2024-6-6
- 在线时间
- 655 小时
- 阅读权限
- 100
- 注册时间
- 2009-7-6
- 积分
- 3010
- 帖子
- 1832
- 精华
- 6
- UID
- 102191
- 性别
- 保密
- 兴趣爱好
- 理论
结构
破解
- 积分
- 3010
- 帖子
- 1832
- 精华
- 6
- UID
- 102191
- 性别
- 保密
- 兴趣爱好
- 理论
结构
破解
|
最早接触奇偶是在学盲拧的时候,奇偶变换,凡是奇数个块循环,总能分解成三循环完成,而偶数个块则会生下一个对换,若分解成对换,则三循环是两个…n循环是n-1个。由于在三阶魔方里,不能单独调换两个块,所以最后若棱块和角块都剩下一对,那么就无法用三循环公式还原,要用角对换+棱对换的公式。如果把 R2 算作两步,数一数可以发现三循环的公式都是偶数步,奇偶变换的公式都是奇数步。
把一个三阶魔方转U,发现是一个棱四循环+角四循环,奇偶性改变,所以三阶转奇数下奇偶改变,转偶数下不变,有奇偶变换。
五魔方转U,发现可以用三循环还原回来,永远是偶状态,没有奇偶变换。
二阶、四阶、空心三阶等魔方单独换两个块是允许的,所以根本谈不上奇偶。
分析原理,
五魔方一次转动产生四个棱对换和四个角对换,都是偶数,所以只有偶状态。
三阶的一次旋转产生三个棱对换(四循环分解)和三个角对换(中层转的时候是三个棱对换和三个心对换),分别都是奇数,总和是偶数。有奇偶变换。
二阶只有角块,一次旋转产生三个角对换,是奇数,没有奇偶。
空三转中层时只有三个棱对换,是奇数,没有奇偶。
四阶中层旋转三个棱对换六个心对换,是奇数,没有奇偶。
偶数高阶同理。
五阶魔方以及奇数高阶都和三阶一样,有奇偶变换。(也许有人会不以为然,五阶可以像四阶一样换两个边棱快,但是要注意了,这时候有两个边心块也会互换,所以那两个棱块不是单独换的。)
综合一下有奇偶变换的转面魔方有个特点,偶数边形,奇数阶,不缺块种。
不符合的有:五魔方、八面体、金字塔是五边形和三角形,奇数边形; 二、四阶…是偶数阶;空心缺心块、唯棱缺角块块种不全。
[ 本帖最后由 Fenz 于 2010-12-21 22:36 编辑 ] |
|