魔方吧·中文魔方俱乐部

 找回密码
 注册
搜索
热搜: 魔方
查看: 719677|回复: 62
打印 上一主题 下一主题

一阶魔方, 1×1×1 [复制链接]

Rank: 1

积分
94
帖子
58
精华
0
UID
89592
性别
保密
跳转到指定楼层
1#
发表于 2009-5-16 10:57:00 |只看该作者 |倒序浏览
一般是三阶魔方,即 3×3×3,

复杂一点的有四阶的 4×4×4

简单一点的有二阶的 2×2×2

有没人想过最简单的一阶 1×1×1 呢?(有 0×0×0吗?)

研究过吗

如果考虑魔方整体方向的话,一阶魔方共有 24 种状态。所以用穷举法分析也是很简单

在网上搜索了一下,十几年前还是有老外对这个简单的一阶魔方也做过详细的研究
也不知道是为了什么?

简单地说,魔方越来越简化,
在三阶魔方中的 RL' 这种旋转方式放在二阶魔方中的话,就退化成了一次魔方整体旋转
二阶魔方中的 R 或 L 之类的旋转在一阶魔方中都退化成了魔方的整体旋转

不考虑魔方的整体方向的话,一阶魔方就只有一种状态了,无所谓还原什么的了
但事实上三阶魔方一般也都是要考虑魔方的方向的,国际比赛的标准是什么?
估计一般都是上白前绿吧。

如果考虑魔方整体方向的话,一阶魔方共有 24 种状态。所以用穷举法分析也是很简单



要把一个想起来很简单的东西说得清楚透彻也不是件简单的事啊,愿意的话请看原文:

Date: Tue, 14 Nov 95 09:13:41 -0400 1995年十一月

God's Algorithm for the 1x1x1 Rubik's Cube


Solving the 1x1x1 Rubik's cube is probably a bit silly and whimsical, but
let's look at it anyway.  

I was led in this direction by rereading some articles in the archives
from Dan Hoey and others concerning NxNxN Rubik's cubes.  For example,
consider Dan's discussion "Cutism, Slabism, and Eccentric Slabism" from
1 June 83 19:39:00.  Sometimes degenerate cases are slightly interesting.  
I guess the 1x1x1 case is the most degenerate we have, unless you want to
consider the 0x0x0.

It seems to me that either cutism or slabism, as Dan calls them, reduce to
whole cube rotations for the 1x1x1 case.  For example, a quarter turn face
turn or a quarter turn slice would be interpreted as a whole cube quarter
turn for the 1x1x1.  Hence, the cube group for the 1x1x1 is simply C, the
group of 24 rotations of the cube.

By analogy with some of our previous work, I can think of essentially
three different ways to model the 1x1x1.
1)  With the 2x2x2, we normally wish to consider the puzzle solved if
    each face is all of one color.  That is, whole cube rotations are
    to be considered equivalent.  With the Singmaster fixed face
    center view of the 3x3x3, the issue of whole cube rotations does
    not arise.  But with the 2x2x2 we would normally consider
    (for example) RL' equivalent to I.  The most common way to
    accomplish this type of equivalence is to fix one of the corners.

If we fix one of the corners of the 1x1x1, then we have a most
remarkable puzzle.  There is only one state, nothing can ever
move, and the puzzle is always solved.


2)  A second way to model the 2x2x2 such that whole cube rotations are
    considered to be equivalent is to consider the set of states to be
    the set of cosets of C, that is, the set of all xC.

If we take this approach with the 1x1x1, then there is only one
coset, namely iC (or just C, if you prefer).  The cube can rotate,
but all 24 states are considered to be equivalent and the puzzle
is always solved.


3)  Finally, if you model the 2x2x2 in such a way that whole cube
    rotations are considered to be distinct, then you are really
    modelling the corners of the 3x3x3.  Indeed, a naive program
    that simply modelled the permutations of the 2x2x2 facelets would  
    in fact unwittingly be modelling the corners of the 3x3x3.

If you take the same approach of modelling the permutations of the
1x1x1 facelets, then you in effect are considering whole
cube rotations to be distinct.  You have a very easy problem,  
but the problem is not totally trivial as it is with approach #1
or approach #2.  The rest of this note will therefore consider the
problem of the 1x1x1 cube where whole cube rotations are considered
to be distinct.

Since we need to deal with whole cube rotations, I will use lower case
letters as our standard E-mail simulation of Frey and Singmaster's script
notation for whole cube quarter turns -- t for Top, r for Right, etc.  We
need only three of the six letters because, for example, we have l=r',
d=t', b=f', etc.  I will use t, r, and f.

We know before we start that there are 24 states.  We also know before we
start that these 24 states form 5 M-conjugacy classes, where M is the set
of 48 rotations and reflections of the cube.  (There are 10 M-conjugacy
classes of M, of which 5 are rotations and 5 are reflections.) Hence, any
discussion of God's algorithm will involve 5 conjugacy classes and 24
states.

The obvious searches to look at are for qturns only, and for qturns plus
hturns.  We may generate the qturn case as C=<t,r,f>.  We may generate
the qturn plus hturn case as C=<t,r,f,t2,r2,f2>.
Qturns Only
Distance Conjugacy Positions  
from     Classes
Start
   0          1        1  {i}
   1          1        6  {t,t',r,r',f,f'}      
   2          2       11  {tt,rr,ff},{tr,tr',tf,tf',t'r,t'r',t'f,t'f'}
   3          1        6  {ttf,ttf',ffr,ffr',rrt,rrt'}
---        ----     ----
Total         5       24
Qturns Plus Hturns
Distance Conjugacy Positions  
from     Classes
Start
   0        1        1  {i}
   1        2        9  {t,t',r,r',f,f'},{t2,r2,f2}      
   2        2       14  {tr,tr',tf,tf',t'r,t'r',t'f,t'f'},
                        {t2f,t2f',f2r,f2r',r2t,r2t'}
---      ----     ----
Total       5       24
There are some additional problems we can look at.  For an example, an
interesting problem on the 3x3x3 is variously called the stuck axle
problem or the five generator problem.  In the case of the 1x1x1, we have
the "two generator problem" because we certainly can generate C as C=<t,f>
(Proof: r=tft').  But can we generate C with only one generator?  The
answer is no.  (Proof:  Order(i)=1, Order(t)=4, Order(tt)=2, Order(tf)=3,
and Order(ttf)=2.  All the orders are less than 24.  Note that it suffices
to calculate the order for one representative of each conjugacy class.)  I
will leave it as an exercise for the reader to determine the lengths of
each of the 24 positions if we generate C as <t,f>, and to determine the
appropriate conjugacy classes to take into account the symmetry of C
generated as <t,f>.


By the way, do we know the minimum number of generators required to
generate the 3x3x3?  Here I do not mean the minimum number of quarter
turns.  I am asking the question if we are permitted to use as generators
any elements of G.

Here is one final item about the 1x1x1.  We do not know how many subgroups
of G there are for the 3x3x3.  But we do know how many subgroups of C
there are.  There has been much discussion of the 98 subgroups of M which
can be arranged in 33 conjugacy classes.  The subgroups of C are simply
those subgroups of M which consist entirely of rotations.  There are 30
such subgroups, and they may be arranged in 11 conjugacy classes.

= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =         
Robert G. Bryan (Jerry Bryan)                jbryan@pstcc.cc.tn.us

[ 本帖最后由 bardy 于 2009-5-16 14:35 编辑 ]
已有 2 人评分经验 收起 理由
ggglgq + 20 支持
JAXUS + 5

总评分: 经验 + 25   查看全部评分

Rank: 2

积分
517
帖子
481
精华
0
UID
39225
性别
2#
发表于 2009-5-16 11:00:48 |只看该作者
人手一个0×0×0

1×1×1感觉只能当手机链

使用道具 举报

Vicki WCA会员  MOD会员 

银魔

域奇

Rank: 7Rank: 7Rank: 7

积分
16832
帖子
12003
精华
8
UID
10183
性别
居住地
江门市

魔方改造大师 爱心大使 八年元老

3#
发表于 2009-5-16 11:06:32 |只看该作者
1x1x1我做过一个~

在图中中间上面的位置~

-----------------------------

注意:我不是楼主~

[ 本帖最后由 Vicki 于 2009-5-18 18:26 编辑 ]

魔方20090425.jpg (380.65 KB, 下载次数: 217)

魔方20090425.jpg

广东新会魔友群41696806 限五邑地区魔友加入        新浪微博@vicki又叫域奇

使用道具 举报

Vicki WCA会员  MOD会员 

银魔

域奇

Rank: 7Rank: 7Rank: 7

积分
16832
帖子
12003
精华
8
UID
10183
性别
居住地
江门市

魔方改造大师 爱心大使 八年元老

4#
发表于 2009-5-16 11:08:58 |只看该作者
其实一阶严格来说不能算是魔方~

乌木还是大烟头说过:有相交的旋转面才能称作魔方~

所以最简单的魔方是1x2x2~

http://bbs.mf8-china.com/viewthread.php?tid=28193
广东新会魔友群41696806 限五邑地区魔友加入        新浪微博@vicki又叫域奇

使用道具 举报

Rank: 2

积分
241
帖子
149
精华
0
UID
64622
性别
保密
5#
发表于 2009-5-16 11:11:46 |只看该作者
1x1x2呢?
好像都能玩

使用道具 举报

Rank: 2

积分
241
帖子
149
精华
0
UID
64622
性别
保密
6#
发表于 2009-5-16 11:13:07 |只看该作者
对不起
说错话了...

使用道具 举报

Rank: 1

积分
56
帖子
56
精华
0
UID
91172
性别
7#
发表于 2009-5-16 11:13:53 |只看该作者
这张照片是俯视阿·!呵呵

使用道具 举报

Rank: 1

积分
94
帖子
58
精华
0
UID
89592
性别
保密
8#
发表于 2009-5-16 11:17:52 |只看该作者
有没有仔细研究过的?我在搜索

使用道具 举报

Rank: 3Rank: 3

积分
631
帖子
554
精华
0
UID
68747
性别
保密

四年元老

9#
发表于 2009-5-16 11:24:06 |只看该作者
随便找一个角块,去掉棱脚,补成方块,就是1X1X1。

使用道具 举报

Rank: 4

积分
1333
帖子
1195
精华
0
UID
42311
性别

六年元老

10#
发表于 2009-5-16 11:26:02 |只看该作者
没见过一阶的.............

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

Archiver|手机版|魔方吧·中文魔方俱乐部

GMT+8, 2024-11-26 13:07

Powered by Discuz! X2

© 2001-2011 Comsenz Inc.

回顶部