- 最后登录
- 2015-5-7
- 在线时间
- 921 小时
- 阅读权限
- 50
- 注册时间
- 2009-6-9
- 积分
- 3147
- 帖子
- 943
- 精华
- 6
- UID
- 97911
- 性别
- 男
- 积分
- 3147
- 帖子
- 943
- 精华
- 6
- UID
- 97911
- 性别
- 男
|
翻单棱是形成是在对中心阶段,两对棱互换的形成是在对棱阶段
【翻单棱原因】:翻单棱是由于四阶魔方的“打乱+对中心”中的双层转动次数(转90度为一次,180度为两次)为奇数次,从而产生了四个棱块的循环交换(1到2,2到3,3到4,4到1),而四循环换可以通过三棱换(不是三对棱的三棱换,是三个棱的三棱换)转换成两个棱互换,同色的两个棱互换就可以形成翻单(对)棱
【验证】:将一个还原了的四阶魔方转一个Rw(双层),然后用ABA'的方式还原中心(A指双层转,B指单层转,比如Rw U Rw'),对中心时不能出项单个的Rw,必须是ABA',或A2形式的也可以,这样打乱+中心步骤中的双层转次数就是奇数次。对完后随意对棱,然后还原三阶部分,你会发现出现了翻单棱的情况。
给个实例:
打乱:Rw
中心:U2 (Rw' U2 Rw) B2 (Rw2 B2 Rw2') (Rw' B2 Rw)
对棱和三阶部分随意,必定会出现翻单棱
还有一个验证方法:任何一条翻单棱公式中双层转的次数必定是奇数次
【两对棱互换原因】:对棱时有一种情况是剩最后两组棱,这时可以通过先错开再翻棱最后和并的方法解决,而错开的方式会决定哪边是那一条棱,因此如果把两棱位置搞反了,就会最终在PLL阶段发现特殊情况…
也就是说剩最后两棱(也不一定是最后的,反正是那种形式的棱换)时的处理可以造成两棱位置的交换
用实例说明一下,复原的四阶做Rw' U' R' U R' F R F' Rw,使两组棱拆开,再用不同的错开方式和并,Rw U' R' U R' F R F' Rw',这时这两对棱的位置就已经被交换了,复原三阶部分到PLL阶段就会出现特殊情况,而换中心可以出现或消除这个情况(空心魔方也会出现两棱互换)是因为换中心相当于要做R'L再加一个M,而M会产生四组棱的循环换(和上面说的翻单棱的成因类似,只是一个是四个棱换,一个是四组棱换),于是四棱换可通过简单的三棱换变成两棱换
【验证】:还是按照上面的打乱和中心步骤:
打乱:Rw
中心:U2 (Rw' U2 Rw) B2 (Rw2 B2 Rw2') (Rw' B2 Rw)
【对棱1】:(D R' U R' U' Rw') (R U' R U Rw) U' L2 U (Rw' U' R' U R' F R F' Rw) 三阶部分随意,到OLL时出现翻单棱,这时统一用这个翻棱公式吧(因为有的翻棱公式会同时把两对棱位置也交换了,这样到PLL部分就说不清了- -)Rw U2 x Rw U2 Rw U2 Rw' U2 Lw U2 Rw' U2 Rw U2 Rw' U2 Rw'
做完OLL后会发现PLL无特殊情况
【对棱2】:按照五阶最后四棱的方法 x'(Rw' U' R' U R' F R F' Rw) U2 (Rw U' R' U R' F R F' Rw') F2 (Rw2 U' R' U R' F R F' Rw'2) 三阶部分随意,到OLL时出现翻单棱,还是用上面的公式 Rw U2 x Rw U2 Rw U2 Rw' U2 Lw U2 Rw' U2 Rw U2 Rw' U2 Rw'
做完OLL后会发现PLL出现了特殊情况
根据对棱1和对棱2的不同结果可以看出两队棱互换确实是出现在对棱阶段
【如何避免】:要避免翻单棱的话比较难,因为翻单棱的出现和打乱步骤有关,除非在知道打乱步骤的情况下=。=
两对棱互换的话避免也是比较难的,因为给你一个打乱的三阶要判断出是否棱位置有错并不是那么简单的,除非你用盲拧编码的方法- -,但如果同时出现翻单棱,倒是可以在OLL阶段判断出是否有两棱换(不只是看棱块,角块也有关系,因为如果是两棱两角换就是正常的PLL了),然后用不同的翻棱公式同时解决两种特殊情况
以上就是我的初步结论,继续研究几天看看会不会有新进展=。=
[ 本帖最后由 lele1415 于 2011-4-28 02:29 编辑 ] |
-
总评分: 经验 + 26
查看全部评分
|